Windows搭建yolov10(CPU/GPU版)训练环境

目录

1.英伟达驱动安装

1.1cuda安装

​编辑

1.2cudnn安装

2.anaconda安装

3.使用conda创建python虚拟环境

4.pycharm安装

下载 PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDEhttps://www.jetbrains.com/zh-cn/pycharm/download/?section=windows

5.yolov10下载

6.进入虚拟环境

7.安装torch(CPU/GPU)

​编辑


1.英伟达驱动安装

1.1cuda安装

CUDA(Compute Unified Device Architecture):

CUDA是由NVIDIA推出的一个并行计算平台和编程模型。

它允许开发者使用NVIDIA GPU进行通用计算。

CUDA提供了驱动程序和工具,使得开发者能够利用GPU的强大计算能力进行各种计算任务,特别是涉及大量并行计算的任务。

cuDNN(CUDA Deep Neural Network library)是NVIDIA专门为深度神经网络设计的一个GPU加速库。它提供了优化的深度学习原语,用于前向和反向传播、卷积、池化和其他标准的神经网络操作。

cuDNN库中的函数都是高度优化的,可以显著提高深度学习模型的训练速度。

它为深度学习框架提供了易于使用的API,使得这些框架(如TensorFlow、PyTorch等)可以轻松地利用GPU加速。

使用nvidia-smi命令查看显卡支持的最高cuda版本

我的电脑显卡最高支持12.7版本

到官网下载cudaCUDA Toolkit Archive | NVIDIA Developericon-default.png?t=O83Ahttps://developer.nvidia.com/cuda-toolkit-archive

下载并安装自己电脑显卡适合的版本,我安装的11.8版本的

1.2cudnn安装

到官网下载适合显卡的版本   cuda装的哪个版本cudnn就选哪个版本就行cuDNN Archive | NVIDIA Developericon-default.png?t=O83Ahttps://developer.nvidia.com/rdp/cudnn-archive#a-collapse742-10

11.x代表所有11版本的cuda均适用

解压压缩包将除了licens

### 配置 VSCode 中 YOLOv8 的 GPU 运行环境 要在 Visual Studio Code (VSCode) 中为 YOLOv8 搭建 GPU 运行环境,需要完成以下几个方面的设置: #### 1. 安装必要的软件和工具 确保已经安装了以下依赖项: - **NVIDIA CUDA Toolkit**: 确认已正确安装并验证其本是否满足需求。可以通过 `nvidia-smi` 和 `nvcc -V` 命令来确认 CUDA 是否正常工作[^1]。 - **Python 环境**: 推荐创建一个新的虚拟环境专门用于 YOLOv8 的开发训练[^2]。 ```bash python -m venv yolov8_env source yolov8_env/bin/activate # Windows 用户可以使用 yolov8_env\Scripts\activate pip install --upgrade pip setuptools wheel ``` - **YOLOv8 所需库**: 使用官方文档中的命令安装所需的 Python 库。 ```bash pip install ultralytics ``` - **Visual Studio Code**: 下载并安装最新的 VSCode[^5]。 --- #### 2. 设置 VSCode 工作区 打开 VSCode 并加载项目文件夹作为工作区。如果尚未克隆 YOLOv8 源码仓库,则可以从 GitHub 上拉取代码: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics/ ``` 在 VSCode 中打开此目录,并通过扩展市场安装以下插件: - **Python 插件** - **C/C++ 插件**(如果有 C++ 文件) - **Code Runner** --- #### 3. 配置 launch.json 为了支持 GPU 加速调试功能,在 `.vscode/launch.json` 文件中定义调试配置。以下是典型的配置示例: ```json { "version": "0.2.0", "configurations": [ { "name": "Python: Current File with GPU Support", "type": "python", "request": "launch", "program": "${file}", "console": "integratedTerminal", "justMyCode": false, "args": ["--device", "0"], // 设定使用的 GPU ID "env": { "CUDA_VISIBLE_DEVICES": "0" // 显式指定可用的 GPU } } ] } ``` 上述配置允许用户通过参数控制设备分配,并显式设定环境变量以启用特定 GPU[^4]。 --- #### 4. 测试 GPU 支持 运行一段简单的脚本来检测当前环境中是否存在有效的 GPU 支持。例如: ```python import torch print(f"CUDA Available: {torch.cuda.is_available()}") print(f"Device Count: {torch.cuda.device_count()}") print(f"Current Device Name: {torch.cuda.get_device_name(0)}") ``` 如果一切正常,应该能够看到类似于以下输出的结果: ``` CUDA Available: True Device Count: 1 Current Device Name: NVIDIA GeForce RTX XXXX ``` --- #### 5. 编写推理或训练脚本 编写一个基于 YOLOv8 的简单推理或训练脚本。例如,进行图像推理时可以尝试以下代码片段: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # Load a pretrained model results = model('https://ultralytics.com/images/bus.jpg', device='cuda:0') for result in results: boxes = result.boxes.cpu().numpy() print(boxes.xyxy) ``` --- #### 6. 启动调试会话 按下 F5 键启动调试模式,或者从菜单栏选择对应的调试选项。此时,VSCode 将按照之前配置好的 `launch.json` 参数执行程序,并利用 GPU 提供加速计算能力。 --- ### 注意事项 - 如果遇到任何错误提示,请仔细检查每一步操作是否有遗漏之处,尤其是关于 CUDA 本兼容性和驱动更新的部分。 - 对于更复杂的场景(如多卡分布式训练),可能还需要额外调整 PyTorch 或 TensorFlow 的相关设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值