CMake 、Bazel、MSYS2、Pytorch等常用工具网址及下载

本文档整理了CMake、Bazel、OpenCV、MSYS2等开发工具的官方网站地址,提供下载链接,还包括TensorFlow、PyTorch、CUDA、TensorRT等库的下载资源,方便开发者快速获取最新版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CMake 、Bazel、MSYS2等常用工具网址及下载

cmake 官网
地址一:https://cmake.org
地址二:https://github.com/Kitware/CMake/releases
附:cmake-3.18.2-win64-x64.msi下载地址

https://cmake.org/
https://github.com/Kitware/CMake/releases

opencv 官网
地址:https://opencv.org/
附:opencv-4.5.2-vc14_vc15.exe下载链接

https://opencv.org/

MSYS2 官网
地址:https://www.msys2.org/
附:msys2-x86_64-20190521.exe下载链接

https://www.msys2.org/

Bazel Github官网
地址:https://github.com/bazelbuild/bazel
附:bazel-0.26.1-windows-x86_64.exe

https://github.com/bazelbuild/bazel

TensorflowC 官网
地址:https://storage.googleapis.com/tensorflow/
附:libtensorflow-cpu-windows-x86_64-1.15.0.zip

https://storage.googleapis.com/tensorflow/   //tensorflow c 接口

I tell you官网
地址:https://msdn.itellyou.cn/

https://msdn.itellyou.cn/

Pytorch
地址:https://pytorch.org/
附:Download here for C++ (Release version=1.9 )
附:Download here for C++ (Debug version=1.9 )

https://pytorch.org/

NVIDIA系列:
1.CUDA历史版本
地址:https://developer.nvidia.com/cuda-toolkit-archive
附:cuda_10.2.89_441.22_win10.exe

https://developer.nvidia.com/cuda-toolkit-archive

2.TensorRT
https://developer.nvidia.com/nvidia-tensorrt-8x-download

https://developer.nvidia.com/nvidia-tensorrt-8x-download

3.Cudnn 历史版本
https://developer.nvidia.com/rdp/cudnn-archive

https://developer.nvidia.com/rdp/cudnn-archive

Dll文件
地址:https://www.dll-files.com
附:VCRUNTIME140_1d.dll

 https://www.dll-files.com

OpenVino
地址:https://docs.openvinotoolkit.org/latest/index.html

https://docs.openvinotoolkit.org/latest/index.html

COCO2014数据集
https://pjreddie.com/projects/coco-mirror/

https://pjreddie.com/projects/coco-mirror/

http://images.cocodataset.org/zips/train2014.zip

http://images.cocodataset.org/annotations/annotations_trainval2014.zip

http://images.cocodataset.org/zips/val2014.zip

http://images.cocodataset.org/annotations/image_info_test2014.zip

http://images.cocodataset.org/zips/test2014.zip

http://images.cocodataset.org/annotations/image_info_test2015.zip

后续:不定期更新常用的网址及版本

(YOLOv5-6.1) C:\Users\MR>conda install python=3.12 Channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults - nvidia - pytorch Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: failed LibMambaUnsatisfiableError: Encountered problems while solving: - package torchvision-0.14.1-py37_cpu requires pytorch 1.13.1, but none of the providers can be installed Could not solve for environment specs The following packages are incompatible ├─ python 3.12** is requested and can be installed; ├─ pytorch-cuda 11.6** is requested and can be installed; └─ torchvision 0.14.1 is not installable because there are no viable options ├─ torchvision 0.14.1 would require │ ├─ pytorch 1.13.1 with the potential options │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.8,<3.9.0a0 , which conflicts with any installable versions previously reported; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.10,<3.11.0a0 , which conflicts with any installable versions previously reported; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ pytorch-mutex 1.0 cuda, which can be installed; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.7,<3.8.0a0 , which conflicts with any installable versions previously reported; │ │ └─ pytorch 1.13.1 would require │ │ └─ python >=3.9,<3.10.0a0 , which conflicts with any installable versions previously reported; │ └─ pytorch-mutex 1.0 cpu, which conflicts with any installable versions previously reported; ├─ torchvision 0.14.1 would require │ └─ python >=3.8,<3.9.0a0 , which conflicts with any installable versions previously reported; ├─ torchvision 0.14.1 would require │ └─ python >=3.10,<3.11.0a0 , which conflicts with any installable versions previously reported; ├─ torchvision
03-21
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值