完整版Word万字思路和代码下载:https://www.jdmm.cc/file/2711953/
一、Conda环境配置方法
为确保代码运行环境的一致性,可通过以下步骤配置Conda环境: 首先,在终端中创建一个新的Conda环境,命名为mathorcup_env
,并指定Python版本为3.8(或兼容3.6-3.9的版本):
conda create -n mathorcup_env python=3.8 -y conda activate mathorcup_env
接下来,安装代码所需的依赖库。项目主要依赖pandas
进行数据处理、numpy
进行数值计算,以及Python内置的os
、datetime
、itertools
等工具库。由于这些库均为Python数据处理的标准库或常用库,可通过pip
直接安装。
二、数学建模解题思路
(一)问题1:货量预测与时间颗粒度分解
货量预测的核心在于结合历史数据修正预知货量,并按时间窗口进行分解。首先,分析预知数据的三大问题(计划偏差、未覆盖订单、订单取消),通过历史15天的实际包裹量与预知货量构建修正因子,修正未来1天的预测结果。具体步骤如下:
-
数据预处理:将附件2的实际货量和附件3的预知货量按日期和线路编码整合,处理中文日期格式为标准时间戳,确保数据对齐。
-
修正因子计算:对每条线路,计算历史实际货量与预知货量的比值(修正因子),取平均值以降低异常值影响,修正因子反映了预知数据的长期偏差趋势。
-
总货量预测:将未来1天的预知货量乘以对应线路的平均修正因子,得到修正后的总货量,确保预测结果贴近实际情况。
-
时间颗粒度分解:根据发运节点的时间窗口(0600对应前一天21:00至当天6:00