2025年第十五届MathorCup数学应用挑战赛赛题D题万字思路助攻【国一大佬】

#新星杯·14天创作挑战营·第10期#

完整版Word万字思路和代码下载:https://www.jdmm.cc/file/2711953/

一、Conda环境配置方法

为确保代码运行环境的一致性,可通过以下步骤配置Conda环境: 首先,在终端中创建一个新的Conda环境,命名为mathorcup_env,并指定Python版本为3.8(或兼容3.6-3.9的版本):

conda create -n mathorcup_env python=3.8 -y
conda activate mathorcup_env

接下来,安装代码所需的依赖库。项目主要依赖pandas进行数据处理、numpy进行数值计算,以及Python内置的osdatetimeitertools等工具库。由于这些库均为Python数据处理的标准库或常用库,可通过pip直接安装。

二、数学建模解题思路

(一)问题1:货量预测与时间颗粒度分解

货量预测的核心在于结合历史数据修正预知货量,并按时间窗口进行分解。首先,分析预知数据的三大问题(计划偏差、未覆盖订单、订单取消),通过历史15天的实际包裹量与预知货量构建修正因子,修正未来1天的预测结果。具体步骤如下:

  1. 数据预处理:将附件2的实际货量和附件3的预知货量按日期和线路编码整合,处理中文日期格式为标准时间戳,确保数据对齐。

  2. 修正因子计算:对每条线路,计算历史实际货量与预知货量的比值(修正因子),取平均值以降低异常值影响,修正因子反映了预知数据的长期偏差趋势。

  3. 总货量预测:将未来1天的预知货量乘以对应线路的平均修正因子,得到修正后的总货量,确保预测结果贴近实际情况。

  4. 时间颗粒度分解:根据发运节点的时间窗口(0600对应前一天21:00至当天6:00࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值