【提示学习简介及其分类】

提示学习简介及其分类:

在深度学习领域,预训练语言模型通过在大量文本数据上进行训练,获得了卓越的表征能力和内蕴知识。这些模型通常通过掩码语言建模(如BERT的MLM)和下句预测等预训练任务来提升其性能。为了在下游任务中充分利用这些模型的潜力,提示学习(Prompt Learning)应运而生。

提示学习分类:

软提示与手工提示:在文本可读性任务中,我们可以设计特定的提示模板来引导模型输出期望的结果。例如,对于难度级别的分类,我们可以构建如下提示:“<文本>,在十二个难度级别中,这个文本的难度是 级。” 这里,下划线()代表掩码位置,我们期待模型在此处输出正确的难度级别。然而,模型输出的不确定性使得掩码位置可能填入词表中的任何词汇,这就需要我们通过手工映射将这些词汇映射到正确的标签上。

软映射与手工映射:手工设计的模板和映射器往往要求研究人员具备深厚的领域知识,这无疑增加了任务难度。手工设计提示和映射器存在一定的局限性。即使是领域专家,也难以设计出既有效又高效的提示。此外,映射器的规则往往需要繁琐的调整和优化。

连续提示与软映射的优势:

连续提示:考虑到提示词和文本输入模型后都会被转化为嵌入向量,我们不禁思考:为何不直接使用模型能够理解的嵌入向量作为提示?这种连续提示的方法允许我们通过模型反馈来优化这些嵌入向量,即使它们对人类来说可能不再直观。但对于模型来说,这种连续的、优化的嵌入向量可能会激发出更好的性能。

软映射:在映射的过程中,我们可以进一步采用软映射的策略。即在模型的输出层,利用线性层来直接对隐藏状态进行分类,从而省去了手工设计映射器的繁琐过程。这种方法不仅简化了操作流程,还有可能提高模型的分类准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值