PEFT介绍及其源码解析

PEFT库介绍

PEFT(Parameter-Efficient Fine-Tuning,参数高效微调)是由 Hugging Face 开源的一个高效微调库,旨在通过少量可训练参数实现对大型预训练模型的快速适应,从而显著降低计算和存储成本。

核心功能与优势
  1. 多种高效微调方法

    • LoRA(Low-Rank Adaptation):通过引入低秩矩阵来微调模型权重,仅需训练少量参数即可达到与全参数微调相当的性能。
    • Prefix Tuning:通过优化输入提示(prompt)来调整模型,不改变模型权重,适应性强。
    • Prompt Tuning:通过优化连续提示来微调模型,适用于零样本和少样本学习。
    • BitFit:仅对模型的偏置项进行微调,极大地减少了需要优化的参数数量。
  2. 显著降低资源消耗

    • PEFT 方法仅需训练模型中极小部分参数(如 0.1%),显著降低了计算和存储成本。
    • 例如,使用 LoRA 微调一个 3B 参数的模型,仅需 14.4GB GPU 内存,而全参数微调则需要 47.14GB。
  3. 与 Hugging Face 生态系统无缝集成

    • PEFT 与 TransformersAccelerate 库深度集成,支持多种模型(如 BERT、GPT、T5)和任务(如序列分类、因果语言建模、图像生成等)。
  4. 应用场景

    • 大语言模型微调:在消费级硬件上高效微调大型语言模型。
    • 图像生成:与 Diffusers 集成,用于微调 Stable Diffusion 等模型。
    • 强化学习:与 TRL 库结合,用于基于人类反馈的强化学习(RLHF)。
    • 多任务学习:支持多任务提示调优,使模型能够适应多个下游任务。
安装与使用
  1. 安装

    • 使用 PyPI 安装:
      pip install peft
      
    • 使用源码安装(获取最新功能):
      pip install git+https://github.com/huggingface/peft
      
    • 本地克隆并安装可编辑版本:
      git clone https://github.com/huggingface/peft
      cd peft
      pip install -e 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值