实例分割和语义分割
一图明了,实例分割也是计算机视觉四大任务中最难的
SOLO
category branch
和YOLO方法类似,划分cell,然后进行分类。
因为FCN的输出是WxH(不考虑channel),需要让它变化为S*S,就要进行下采样和插值。文中说明三种插值方式结果相差不多。
1、直接双线性差值
2、adpative pooling
3、区域网格插值
adpative pooling:就是自适应的pooling,通过计算stride和padding来下采样。
mask branch
这个分支进行像素级的分割,不同于传统的语义分割输入输出同大小,它的输出是(HxWxS^2)加入了位置信息,s*2中每一个channel负责对应cell中的物体的分割
大致了解思路,有时间再看论文
https://www.zhihu.com/question/360594484/answer/947252879
https://blog.csdn.net/qq_41994006/article/details/105170426
https://blog.csdn.net/sanshibayuan/article/details/103895058