神经网络——基础思想

本文介绍了神经网络的基础思想,通过模拟人脑神经网络进行机器学习。以识别手写数字为例,阐述了神经网络的工作原理,包括图像表示、各层功能以及权重和激活函数的作用。解释了如何通过调整权重和偏置来训练神经网络,以实现对复杂图形的识别。
摘要由CSDN通过智能技术生成

神经网络

神经网络是一种通过模拟人脑的神经网络,来实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多。


用一个例子来学习神经网络:用神经网络识别手写数字。
本文中不同网络层的功能为假想例子,实际神经网络工作时并不会按照这样分割,而是以黑盒的方式进行。这样假设只是帮助理解。
在这里插入图片描述
在这里插入图片描述

首先要知道,计算机中的图像是由一个数字矩阵存储的,每一个像素点都由n个数字组成(n为通道数,如RGB则为三个通道),这个例子中的图片为28x28的单通道灰度图像,每个像素点的数字为“激活值”,其大小表示像素点颜色的深浅,数字越小颜色越“黑”,数字越大颜色越“白”)

我们先将这784个像素点的值逐行作为这个神经网络的第一层的值,这样输入问题解决了,那么怎样通过神经网络来识别手写数字呢?
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值