神经网络
神经网络是一种通过模拟人脑的神经网络,来实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多。
用一个例子来学习神经网络:用神经网络识别手写数字。
本文中不同网络层的功能为假想例子,实际神经网络工作时并不会按照这样分割,而是以黑盒的方式进行。这样假设只是帮助理解。
首先要知道,计算机中的图像是由一个数字矩阵存储的,每一个像素点都由n个数字组成(n为通道数,如RGB则为三个通道),这个例子中的图片为28x28的单通道灰度图像,每个像素点的数字为“激活值”,其大小表示像素点颜色的深浅,数字越小颜色越“黑”,数字越大颜色越“白”)
我们先将这784个像素点的值逐行作为这个神经网络的第一层的值,这样输入问题解决了,那么怎样通过神经网络来识别手写数字呢?