线性代数基本概念

n维空间( R n R^n Rn)中的一个向量 v v v由n个部分组成: v = [ v 1 v 2 ⋮ v n ] v=\begin{bmatrix} v_1\\v_2 \\ \vdots \\v_n \end{bmatrix} v=v1v2vn

空间 R n R^n Rn是由所有具有n个分量的列向量 v v v组成的。

向量空间的子空间是由一组满足下面两个条件的向量(包括零向量)组成的:如果 v v v w w w是子空间中的向量, c c c是一个实数,那么:

  • v + w v+w v+w也在子空间中
  • c v cv cv也在子空间中

向量 v v v w w w的一个线性组合是 c v + d w cv+dw cv+dw

由向量 v 1 , v 2 , … , v n v_1,v_2,\dots, v_n v1,v2,,vn的所有线性组合 c 1 v 1 + c 2 v 2 + ⋯ + c n v n c_1v_1+c_2v_2+\dots+c_nv_n c1v1+c2v2++cnvn可以扩展(span)为一个子空间。

如果 v 1 , v 2 , . . . , v n v_1, v_2, ..., v_n v1,v2,...,vn是线性无关的,那么只有 c i ( i = 1 , . . . , n ) c_i (i=1,...,n) ci(i=1,...,n)全部为0时,才能使下式成立 c 1 v 1 + c 2 v 2 + . . . + c n v n = 0 c_1v_1+c_2v_2+...+c_nv_n=0 c1v1+c2v2+...+cnvn=0

向量空间的(通俗的说时坐标系)是一组满足下面两个条件的向量:这组向量是线性无关的,并且他们可以span整个空间。

基的个数就是子空间的秩(rank)

参考:Introduction to Linear Algebra, Gibert Strang


下面说一下“基变换”:
可以在向量空间中选择几个列向量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn作为它的基,可以把它们放到一个矩阵中, X = [ x 1   x 2   . . .   x n ] X=[x_1\ x_2\ ...\ x_n] X=[x1 x2 ... xn]。它们线性无关,并且它们的线性组合 c 1 x 1 + c 2 x 2 + . . . + c n x n = X c ⃗ c_1x_1+c_2x_2+...+c_nx_n=X\vec{c} c1x1+c2x2+...+cnxn=Xc 可以表示空间中的任何向量,那么空间中的任何一个向量就可以用这 n n n个系数表示, c ⃗ = [ c 1 c 2 ⋮ c n ] \vec{c} = \begin{bmatrix} c_1\\ c_2\\ \vdots\\c_n\end{bmatrix} c =c1c2cn
如果选择另外一组基, [ w 1   w 2   . . .   w n ] = W \begin{bmatrix}w_1 \ w_2\ ...\ w_n\end{bmatrix}=W [w1 w2 ... wn]=W,它的线性组合 d 1 w 1 + d 2 w 2 + . . . + d n w n = W d ⃗ d_1w_1+d_2w_2+...+d_nw_n=W\vec{d} d1w1+d2w2+...+dnwn=Wd ,空间中一个点可以表示为 d ⃗ = [ d 1 d 2 ⋮ d n ] \vec{d}=\begin{bmatrix} d_1\\d_2\\ \vdots \\d_n\end{bmatrix} d =d1d2dn

同一个点在不同的基中表示不同。如果是同一个点,下式成立:
c 1 x 1 + c 2 x 2 + . . . + c n x n = d 1 w 1 + d 2 w 2 + . . . + d n w n [ x 1   x 2   . . .   x n ] [ c 1 c 2 ⋮ c n ] = [ w 1 , w 2 , . . . , w n ] [ d 1 d 2 ⋮ d n ] X c ⃗ = W d ⃗ c_1x_1+c_2x_2+...+c_nx_n=d_1w_1+d_2w_2+...+d_nw_n \\ \begin{bmatrix} x_1\ x_2\ ...\ x_n\end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ \vdots\\c_n\end{bmatrix} = \begin{bmatrix}w_1,w_2,...,w_n\end{bmatrix}\begin{bmatrix} d_1\\d_2\\ \vdots \\d_n\end{bmatrix} \\ X\vec{c} = W\vec{d} c1x1+c2x2+...+cnxn=d1w1+d2w2+...+dnwn[x1 x2 ... xn]c1c2cn=[w1,w2,...,wn]d1d2dnXc =Wd
上面最后一个等式的意思是,同一个点选择不同的基( X , W X,W X,W)可以有不同的表示( c ⃗ , d ⃗ \vec{c},\vec{d} c ,d )。
d ⃗ = W − 1 X c ⃗ \vec{d}=W^{-1} X \vec{c} d =W1Xc 这个就是基变换。

说的比较抽象,举个简单的例子:

上面的直线可以看作一维空间 R 1 R^1 R1,可以选择任意一个向量作为基,因为一个常数乘以这个向量可以表示直线上任意一个点。可以选 [ 1 ] [1] [1]作基,也可以选 [ − 1 ] [-1] [1]做基。如图中坐标为2的点, [ 1 ] ∗ 2 = [ − 1 ] ∗ ( − 2 ) [1]*2=[-1]*(-2) [1]2=[1](2)

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值