大模型——推理优化——KV Cache

在本文中,我们将详细介绍KV Cache,这是一种大模型推理加速的方法。
正如其名称所示,该方法通过缓存Attention中的K和V来实现推理优化。

一、大模型推理的冗余计算

我们先简单观察一下基于Decoder架构的大模型的生成过程
用户输入“中国的首都”,模型续写得到的输出为“是北京”,模型的生成过程如下:

  1. 将“中国的首都”输入模型,得到每个token的注意力表示(绿色部分)。使用“首都”的注意力表示,预测得到下一个token为“是”(实际还需要将该注意力表示映射成概率分布logits,为了方便叙述,我们忽略该步骤)。

  2. 将“是”拼接到原来的输入,得到“中国的首都是”,将其输入模型,得到注意力表示,使用“是”的注意力表示,预测得到下一个token为“北”。

  3. 将“北”拼接到原来的输入,依此类推,预测得到“京”,最终得到“中国的首都是北京”

存在的问题:
在每一步生成中,仅使用输入序列中的最后一个token的注意力表示,即可预测出下一个token。但模型还是并行计算了所有token的注意力表示,其中产生了大量冗余的计算(包含qkv映射,attention计算等),并且输入的长度越长,产生的冗余计算量越大。

例如:

  1. 在第一步中,我们仅需使用“首都”的注意力表示,即可预测得到“是”,但模型仍然会并行计算出“中国”,“的”这两个token的注意力表示。

  2. 在第二步中,我们仅需使用“是”的注意力表示,即可预测得到“北”,但模型仍然会并行计算“中国”,“的”,“首都”这三个token的注意力表示。

二、Self-Attention过程解析

2.1 公式解析

假设输入序列长度为 n,第 j个token对于整个输入序列的注意力表示如下公式: 

                                    b^{j} = \sum_{i=1}^{n}softmax(q^{j} \cdot k^{i})v^{i}

j个token对于整个输入序列的注意力表示的计算步骤大致如下:

  1. 向量映射:将输入序列中的每个token的词向量分别映射为q,k,v三个向量。

  2. 注意力计算:使用q^{j}分别与每个k进行点乘,得到第j个token对每个token的注意力分数。

  3. 注意力分数归一化:对注意力分数进行softmax,得到注意力权重。

  4. 加权求和:注意力权重与对应的向量v加权求和,最终得到第j个token的注意力表示。

2.2 过程实例

下面将以图像的方式帮助大家更形象地理解Self Attention。

假设:

  • a = a^{1}a^{2}a^{3}a^{4}
  • a^{1}对于整个输入序列a的注意力值是b^{1}

根据上面的Self-Attention公式得出:

 b^{1} = \sum_{i=1}^{4}softmax(q^{1} \cdot k^{i})v^{i}

继续观察a^{2}对于整个输入序列a的注意力b^{2}表示  ,即:
b^{2} = \sum_{i=1}^{4}softmax(q^{2} \cdot k^{i})v^{i}

三、KV Cache

3.1 原理

  • 在推理阶段,当输入长度为 n,我们仅需使用  即可预测出下一个token,但模型却会并行计算出  ,这部分会产生大量的冗余计算。
  • 而实际上b^{n}可直接通过公式b^{n} = \sum_{i=1}^{n}softmax(q^{n} \cdot k^{i})v^{i}算出,即b^{n}的计算只与  q^{n}、所有 k 和  v有关
  • KV Cache的本质是以空间换时间,它将历史输入的token的kv缓存下来,避免每步生成都重新计算历史token的k和 v 以及注意力表示  b^{1}...b^{n-1},而是直接通过b^{n} = \sum_{i=1}^{n}softmax(q^{n} \cdot k^{i})v^{i}的方式计算得到 b^{n} ,然后预测下一个token。

3.2 KV cache过程

第一步生成时,缓存  K,V均为空,输入为“中国的首都”,模型将按照常规方式并行计算:

  1. 并行计算得到每个token对应的  k,v,以及注意力表示b^{1},b^{2},b^{3}  。

  2. 使用 b^{3} 预测下一个token,得到“是”。

  3. 更新缓存,令 K=[k^{1},k^{2},k^{3}],V=[v^{1},v^{2},v^{3}] 。

第二步生成时,计算流程如下:

  1. 仅将“是”输入模型,对其词向量进行映射,得到 q^{4},k^{4},v^{4} 。

  2. 更新缓存,令 K=[k^{1},k^{2},k^{3},k^{4}],V=[v^{1},v^{2},v^{3},v^{4}]  。

  3. 计算  b^{4} = \sum_{i=1}^{4}softmax(q^{4} \cdot k^{i})v^{i},预测下一个token,得到“北”

第三步生成时,计算流程如下:

  1. 仅将“北”输入模型,对其词向量进行映射,得到q^{5},k^{5},v^{5}  。

  2. 更新缓存,令 K=[k^{1},k^{2},k^{3},k^{4},k^{5}],V=[v^{1},v^{2},v^{3},v^{4},v^{5}]   。

  3. 计算 b^{5} = \sum_{i=1}^{5}softmax(q^{5} \cdot k^{i})v^{i} ,预测下一个token,得到“京”

 

上述生成流程中,只有在第一步生成时,模型需要计算所有token的 k,v ,并且缓存下来。
此后的每一步,仅需计算当前token的 q^{n},k^{n},v^{n} ,更新缓存 K,V,然后使用 q^{n},K,V 即可算出当前token的注意力表示,最后用来预测一下个token。 

3.3 代码修改

这里参考gpt2里面的代码实现

https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py

query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)

query = self._split_heads(query, self.num_heads, self.head_dim)  # 当前token对应的query
key = self._split_heads(key, self.num_heads, self.head_dim)  # 当前token对应的key
value = self._split_heads(value, self.num_heads, self.head_dim)  # 当前token对应的value

if layer_past is not None:
    past_key, past_value = layer_past  # KV Cache
    key = torch.cat((past_key, key), dim=-2)  # 将当前token的key与历史的K拼接
    value = torch.cat((past_value, value), dim=-2)  # 将当前token的value与历史的V拼接

if use_cache is True:
    present = (key, value)
else:
    present = None

# 使用当前token的query与K和V计算注意力表示
if self.reorder_and_upcast_attn:
    attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
else:
    attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

#参考
 图解大模型推理优化之KV Cache

  • 26
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值