大模型推理优化策略 Qunatized KV Cache MQA/GQA FlashAttention PagedAttention 算子融合 延迟优化 No Padding优化 动态批次处理

本文探讨了大模型推理优化的各种策略,包括使用低精度数据类型、模型量化、显存复用、PagedAttention、KV Cache优化、MQA/GQA、FlashAttention、动态批次处理、异步服务、Inflight Batching、量化技术如GPTQ、AWQ、SmoothQuant和SpQR,以及模型并行的Tensor和Pipeline Parallelism。这些优化手段旨在提高模型的推理速度、降低显存占用并实现资源的有效利用,以应对大模型在实际应用中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型推理优化策略

首先,大模型推理优化策略的目标是提高模型的推理速度,同时尽量保持模型的性能。以下是一些常见的优化策略:

使用低精度数据类型:如float16或bfloat16,可以降低计算成本,提高推理速度,同时减少内存消耗。这种方法能在保证模型性能的前提下,显著提高推理速度并减少内存消耗。
模型量化:通过降低模型权重和激活的精度来减小模型大小并加速推理。但需要注意的是,量化可能会降低模型的预测质量,因此需要在性能和精度之间找到平衡。
使用adapters进行微调:这是一种轻量级的模型微调方法,可以在不改变原始模型参数的情况下,通过添加额外的参数来提高模型在特定任务上的性能。这种方法与模型量化技术结合使用,能进一步提升模型的推理性能。

显存优化

内存复用:这是一种有效的显存管理技术,通过在同一块显存中同时存储多个数据,以提高显存利用率和计算效率。相同或相似的数据可以共享显存空间,避免重复存储。
内存分配策略:合理的内存分配策略对于显存管理和优化至关重要。尽可能地重用已经分配的显存空间,以减少内存分配和释放的开销。
显存压缩:这是一种有效利用显存空间的技术,可以将存储在显存中的数据进行压缩,以节省显存空间。无损压缩可以保持数据的完整性,而有损压缩则可以进一步减小存储开销,但可能会牺牲一定的数据精度。

PagedAttention

PagedAttention
PagedAttention是一种在人工智能领域中应用的注意力机制。与传
统的注意力机制将所有输入信息一视同仁地处理不同,PagedAttention通过分页的方式对输入的信息进行处理,使得模型能够更准确地关注到关键信息,从而提高模型的性能和效果。

具体来说,PagedAttention将序列中的KV缓存划分为块,每块包含固定数量的token的key和value张量。由于这些块在显存中不必连续,因此可以像OS的虚拟内存分页一样,以更灵活的方式管理键和值。每个序列的连续逻辑块通过block table映射到非连续物理块,物理块可在生成新token时按需分配。这种内存管理方式使得显存占用减少,吞吐量提升。

PagedAttention为大型语言模型(LLM)的实际应用带来了显著的性能提升。在深度学习领域,特别是LLM的训练中,面临着巨大的计算资源和内存消耗问题。PagedAttention算法通过构建LLM服务引擎,实现了LLM吞吐量的显著提升,为LLM的进一步发展提供了有力支持。

  • KV cache,其具有以下特点:1. 显存占用大,14b级别的模型,每个token需要约0.7M-1M的显存;2. 动态变化:KV 缓存的大小取决于序列长度,这是高度可变和不可预测的。因此,这对有效管理 KV cache 挑战较大。该研究发现,由于碎片化和过度保留,现有系统浪费了 60% - 80% 的显存。
  • 为了解决这个问题,该研究引入了 PagedAttention,这是一种受操作系统中虚拟内存和分页经典思想启发的注意力算法。与传统的注意力算法不同,PagedAttention 允许在非连续的内存空间中存储连续的 key 和 value 。具体来说,PagedAttention 将每个序列的 KV cache 划分为块,每个块包含固定数量 token 的键和值。在注意力计算期间,PagedAttention 内核可以有效地识别和获取这些块。因为块在内存中不需要连续,因而可以用一种更加灵活的方式管理 key 和 value ,就像在操作系统的虚拟内存中一样:可以将块视为页面,将 token 视为字节,将序列视为进程。序列的连续逻辑块通过块表映射到非连续物理块中。物理块在生成新 token 时按需分配。在 PagedAttention 中,内存浪费只会发生在序列的最后一个块中。这使得在实践中可以实现接近最佳的内存使用,仅浪费不到 4%。
  • PagedAttention 还有另一个关键优势 —— 高效的内存共享。例如在并行采样中,多个输出序列是由同一个 prompt 生成的。在这种情况下,prompt 的计算和内存可以在输出序列中共享。PagedAttention 自然地通过其块表格来启动内存共享。与进程共享物理页面的方式类似,PagedAttention 中的不同序列可以通过将它们的逻辑块映射到同一个物理块的方式来共享块。为了确保安全共享,PagedAttention 会对物理块的引用计数进行跟踪,并实现写时复制(Copy-on-Write)机制。PageAttention 的内存共享大大减少了复杂采样算法的内存开销,例如并行采样和集束搜索的内存使用量降低了 55%。这可以转化为高达 2.2 倍的吞吐量提升。
  • continuous batching
  • CUDA kernel优化

Qunatized KV Cache

Quantized KV Cache是一种优化策略,其核心思想是减少KV-Cache的数量,以少量的KV-Cache对应多个query。这种策略通常用于大模型推理优化中,以降低显存占用和提高计算效率。

在深度学习和人工智能领域,大模型的推理过程往往需要消耗大量的计算资源和显存。Quantized KV Cache通过量化技术来降低KV-Cache的数据精度,从而减少其占用的显存空间。这种量化过程可以是有损的,也可能是无损的,具体取决于量化算法的精度和策略。

这种优化策略在实际应用中可以显著提高大模型的推理速度,同时降低对硬件资源的需求。然而,需要注意的是,量化可能会引入一定的误差,因此在应用Quantized KV Cache时需要权衡模型的精度和性能。

此外,Quantized KV Cache还可以与其他优化策略结合使用,如模型剪枝、权重共享等,以进一步提高模型的推理效率和性能。

MQA/GQA

核心思想是检索kv-cache的数量,以少量kv-cache对应多个query

MQA(Multi-Query Attention,多查询注意力)和GQA(Grouped-Query Attention,分组查询注意力)的核心思想并非仅仅在于减少KV-Cache的数量以对应多个query。这两种注意力机制在NLP和Transformer架构中有着重要的应用,它们的主要目的是通过不同的方式优化模型的推理效率和性能。

MQA是Google团队在2019年提出的,用于自回归解码的一种注意力机制。它的主要特点在于让所有的头之间共享同一份Key和Value矩阵,每个头只单独保留了一份Query参数。这种设计显著减少了计算量,提高了推理效率。

GQA则是在MQA的

<think>嗯,我现在要了解一下KV Cache优化,这好像是关于大模型推理加速的技术吧。首先,得先搞清楚什么是KV Cache。在Transformer模型中,特别是自回归模型如GPT,每次生成一个token的时候,模型都需要处理之前所有生成的token。这时候,注意力机制中的Key和Value向量会被缓存起来,避免重复计算,这就是KV Cache的作用。 不过,KV Cache虽然节省了计算时间,但会占用很多内存,尤其是在处理长序列时,内存消耗会变得非常大。比如,生成很长的文本时,KV Cache可能会成为瓶颈,影响推理速度和可扩展性。所以,优化KV Cache的目标应该是减少内存占用,同时保持或提升推理速度。 接下来,我得想想有哪些优化方法。可能的方向包括压缩、共享、量化或者动态管理这些缓存。比如,有没有办法只保留重要的Key和Value,而丢弃那些不太重要的?或者能不能对KV Cache进行量化,用更少的比特来存储,从而减少内存占用? 还有一种可能是结构上的优化。比如,Multi-Query Attention(MQA)或者Grouped-Query Attention(GQA),这些方法通过减少Key和Value头的数量来降低缓存的大小。MQA让所有的查询头共享同一组Key和Value头,而GQA则是分组共享,这样可以在减少缓存的同时保持一定的模型性能。 另外,动态KV Cache管理也是个方向。根据序列的长度或者生成过程中的某些指标,动态调整缓存的大小。比如,当序列超过一定长度时,选择性丢弃一些较早的token的KV Cache,或者合并多个token的KV信息,从而控制内存增长。 还有像窗口注意力或者稀疏注意力机制,可能限制了每个token只能关注前面一定窗口内的token,这样KV Cache的大小就不会随着序列长度线性增长,而是固定在一个窗口大小,从而节省内存。 不过这些方法可能各有优缺点。比如,量化可能会引入精度损失,影响模型生成的质量;而动态管理可能需要复杂的策略,实现起来比较麻烦。MQAGQA需要在训练时调整模型结构,可能不适合已经训练好的模型。 另外,有没有一些系统级的优化?比如内存分配策略,或者利用硬件特性来更高效地存储和访问KV Cache。比如,FlashAttention这样的优化技术,通过优化显存访问方式来提高效率,可能也能间接优化KV Cache的性能。 还有一个问题是,不同的模型架构可能对KV Cache的依赖不同。比如,Decoder-only的模型在生成时每一步都需要KV Cache,而Encoder-Decoder模型可能在解码时也需要缓存Encoder的KV,所以优化策略可能需要根据模型类型调整。 再想想实际应用中的效果。比如,使用KV Cache优化后,内存占用的减少比例有多大?推理速度能提升多少?有没有论文或者实验结果支持这些数据?比如,GQA可能比MQA在保持模型质量的同时减少更多的缓存,或者某些动态管理方法在长文本生成中效果显著。 还有,工程实现上的挑战。比如,如何高效地实现KV Cache的压缩或量化,是否容易集成到现有的推理框架中,如Hugging Face的Transformers库或者vLLM等。可能有些优化需要修改模型结构或者注意力计算的具体实现,这可能涉及到底层代码的改动。 最后,总结一下,KV Cache优化主要是通过结构设计、压缩技术、动态管理和硬件协同等方法,在减少内存占用的同时保持推理效率,这对于大模型的实际应用非常重要,尤其是在资源受限的环境下或者需要处理超长序列的场景中。</think>KV Cache优化是大型语言模型(LLM)推理加速的关键技术之一,以下是逐步解析: --- ### **1. KV Cache的作用** 在Transformer的自回归生成中(如GPT),每次生成新token时,模型需计算当前输入与历史所有token的注意力。为提升效率,**Key和Value向量会被缓存**(即KV Cache),避免重复计算。例如: - **未优化时**:生成第$t$个token需重新计算前$t-1$个token的Key/Value。 - **使用KV Cache后**:直接复用缓存,计算复杂度从$O(t^2)$降为$O(t)$。 --- ### **2. 问题:KV Cache的内存瓶颈** - **内存消耗公式**: $$ \text{内存} = 2 \times L \times h \times b \times s $$ 其中$L$为层数,$h$为注意力头数,$b$为批大小,$s$为序列长度。 - **示例**:175B参数的模型,序列长度2048时,KV Cache占用显存约**1.2TB**,远超GPU容量。 --- ### **3. 优化方法分类** #### **(1) 结构设计优化** - **Multi-Query Attention (MQA)** 所有Query头共享同一组Key/Value头,显存占用降低为原$1/n$($n$为头数)。 - **Grouped-Query Attention (GQA)** 折中方案,将头分为若干组,组内共享Key/Value,平衡性能与显存(如Llama 2采用)。 #### **(2) 量化与压缩** - **INT8/FP8量化**:将Key/Value从FP16转为低精度格式,显存减半。 - **稀疏化**:丢弃部分不重要的Key/Value(需设计重要性评估指标)。 #### **(3) 动态管理策略** - **窗口限制**:仅保留最近$k$个token的KV Cache(类似滑动窗口),显存复杂度从$O(s)$降为$O(k)$。 - **选择性缓存**:根据注意力分数或熵值,动态丢弃低频使用的历史KV。 #### **(4) 系统级优化** - **内存复用**:通过内存池预分配,减少碎片化(如vLLM的PagedAttention)。 - **计算-存储权衡**:部分场景下牺牲计算换显存,如重新计算部分Key/Value。 --- ### **4. 实际效果对比** | 方法 | 显存减少比例 | 时延影响 | 适用场景 | |---------------|--------------|----------|------------------------| | MQA | 90%+ | 低 | 高吞吐推理 | | INT8量化 | 50% | 中 | 显存受限设备 | | 窗口限制 | 80%+ | 高 | 超长文本生成 | | PagedAttention| 30%~50% | 低 | 多请求并行 | --- ### **5. 挑战与趋势** - **精度损失**:量化或稀疏化可能降低生成质量,需结合校准或微调。 - **硬件适配**:需与GPU/NPU的显存带宽特性结合(如FlashAttention-2)。 - **动态策略泛化**:如何设计普适的KV Cache淘汰机制仍需探索。 --- ### **总结** KV Cache优化通过**结构简化、量化压缩、动态管理**等方法,显著降低显存占用,使大模型在有限资源下支持更长序列和更高吞吐。未来方向包括自动化策略与硬件协同设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值