【每周一文】Factorization Meets the Neighborhood:a Multifaceted Collaborative Filtering Model

概述

在推荐系统中,协同过滤(CF:Collaborative Filtering)算法由于其领域无关性以及比较好的推荐效果被广泛使用;
CF模型比较常用的包括最近邻方法和因子分解算法,由于这两种算法各有优缺点;该文提出了一种策略将这两种方法进行综合建模,并且可以适用于隐式反馈数据。

已有模型

最近邻方法

CF常用的有user_based和item_based两个模型,后者由于其推荐效果和可解释性比较强,比较被推荐使用。
item_based方法思路是根据用户个人偏好推荐和这些item最相关的物品。过程如下
1. 根据用户和物品的打分矩阵或者相关数据,计算物品两两之间的相似度 s(i,j) ,常用相似度算法包括皮尔逊系数、jaccard系数
2. 通常情况下相似度计算可能需要大量数据支持,对于稀疏数据需要对数据规模进行置信度加权,常用加权方法可以是 sij=nijnij+λpij
3. 用户对某物品打分公式为 rui=bui+jSki;usij(rujbuj)jSki;usij ,其中 buibui=μ+bu+bi++

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
因子分解遇见邻域:一个多方面的协同过滤方法是一种结合了因子分解和邻域方法的协同过滤算法。在传统的协同过滤算法中,主要有两种方法:基于邻域的方法和基于模型的方法。基于邻域的方法主要是通过计算用户间或物品间的相似度来推荐相似用户或相似物品的评分。而基于模型的方法则是通过构建模型来预测评分。 因子分解是一种常见的基于模型的方法,它可以将用户-物品评分矩阵分解为两个低秩矩阵的乘积,以得到用户和物品的隐含特征。这种方法可以有效地处理稀疏性和冷启动的问题,但在数据稀疏的情况下仍然存在一些挑战。 为了克服因子分解算法在数据稀疏情况下的问题,多方面的协同过滤算法提出了将因子分解与邻域方法相结合的新思路。具体而言,它利用了邻域方法的局部信息来改进因子分解算法的准确度和鲁棒性。 在多方面的协同过滤算法中,首先通过因子分解算法得到用户和物品的隐含特征,并用隐含特征对评分进行预测。然后,利用邻域方法计算用户或物品的邻居,并根据邻居的评分信息进行调整。最终,通过加权融合因子分解和邻域方法的结果,得到最终的推荐结果。 该算法的优点是综合了因子分解和邻域方法的优势,可以克服两种方法在特定情况下的局限性。它既考虑了全局的隐含特征,又考虑了局部的用户或物品相似度。因此,多方面的协同过滤算法在推荐系统中具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值