https://zh.m.wikipedia.org/zh-hans/%E5%90%8C%E8%83%9A
https://math.ecnu.edu.cn/~bliu/files/differential%20geometry/1%20differential%20manifold.pdf
https://zhuanlan.zhihu.com/p/22977034
线性变换中,如果该线性变换是可逆的,那这个线性变换就称之为同构。同胚是指拓扑空间中,存在一个变换函数,该变换函数满足:
- 是双射(单射和满射)
- 是连续
- 反函数是连续的(是开映射)
满足上面三个性质的函数就是双连续,自同胚就是拓扑空间自身同胚与本身。
拓扑:几何图形或空间在连续改变形状后还能保持不变的一些性质,重点连续性质以及在连续变换下保持不变的性质,只关心物体中的位置关系,不关心形状和大小。流形就是特殊的拓扑空间,特殊性体现在每个邻域由欧几里得空间组成。
流形是指连在一起的区域,数学上是一组点,每个点都有邻域,给定任何一个点,流形局部看起来就像欧几里得空间,也就是局部空间有欧几里得空间的性质(也称之为局部同胚到欧式空间上),可以用欧式空间来进行距离计算。因此,很容易的在局部建立降维映射关系,然后在设法将局部关系推广到全局,进而可视化展示。
流形学习就是一类借鉴了拓扑流形概念的降维方法。流行学习的数学定义就是:已知数据集,假定中的样本是由低维空间中的数据集通过某个未知的非线性映射所生成的:。εi是噪声,,yi就是我们能求解的低维邻域的欧几里得空间,在这个空间上可以使用欧几里得空间性质。是原始的高维空间。
流形微分流形微分几何
微分流形(differential manifold)也称之为光滑流形(smooth manifold),上面讲到拓扑流形数局部同胚到欧氏空间上的,那么这个欧氏空间上可导性是个局部的特性,我们是否可以通过这个同胚来定义拓扑结构上连续函数的可微性。微分流形是指这个流形是由同胚于欧式空间的局部光滑粘贴起来的,也就是赋予了微分结构的流形。
微分同胚也称之为光滑同胚,上面说道同胚是指拓扑空间存在一个可逆的连续映射,并且逆映射也是连续的,那此处的流形微分同胚就是指存在一个可逆的光滑映射,并且逆映射也是光滑的。