微分同胚

流形学习 | 机器之心

https://zh.m.wikipedia.org/zh-hans/%E5%90%8C%E8%83%9A

https://math.ecnu.edu.cn/~bliu/files/differential%20geometry/1%20differential%20manifold.pdf

https://zhuanlan.zhihu.com/p/22977034

线性变换中,如果该线性变换是可逆的,那这个线性变换就称之为同构同胚是指拓扑空间中,存在一个变换函数,该变换函数满足:

 

  1. 是双射(单射和满射)
  2. 是连续
  3. 反函数是连续的(是开映射)

满足上面三个性质的函数就是双连续,自同胚就是拓扑空间自身同胚与本身。

拓扑:几何图形或空间在连续改变形状后还能保持不变的一些性质,重点连续性质以及在连续变换下保持不变的性质,只关心物体中的位置关系,不关心形状和大小。流形就是特殊的拓扑空间,特殊性体现在每个邻域由欧几里得空间组成。

流形是指连在一起的区域,数学上是一组点,每个点都有邻域,给定任何一个点,流形局部看起来就像欧几里得空间,也就是局部空间有欧几里得空间的性质(也称之为局部同胚到欧式空间上),可以用欧式空间来进行距离计算。因此,很容易的在局部建立降维映射关系,然后在设法将局部关系推广到全局,进而可视化展示。

流形学习就是一类借鉴了拓扑流形概念的降维方法。流行学习的数学定义就是:已知数据集,假定中的样本是由低维空间中的数据集通过某个未知的非线性映射所生成的:εi是噪声,yi就是我们能求解的低维邻域的欧几里得空间,在这个空间上可以使用欧几里得空间性质。是原始的高维空间。

流形微分流形微分几何

微分流形(differential manifold)也称之为光滑流形(smooth manifold,上面讲到拓扑流形数局部同胚到欧氏空间上的,那么这个欧氏空间上可导性是个局部的特性,我们是否可以通过这个同胚来定义拓扑结构上连续函数的可微性。微分流形是指这个流形是由同胚于欧式空间的局部光滑粘贴起来的,也就是赋予了微分结构的流形。

微分同胚也称之为光滑同胚,上面说道同胚是指拓扑空间存在一个可逆的连续映射,并且逆映射也是连续的,那此处的流形微分同胚就是指存在一个可逆的光滑映射,并且逆映射也是光滑的。

### 回答1: 微分流形是微分几何学的一个重要研究对象,是一种在局部上与欧几里德空间同的空间。微分流形可以用来描述一般性的曲线、曲面以及更高维的空间形状,其具备了良好的微分结构和局部欧几里德性质。 通过学习微分流形初步理论,我们可以深入了解微分流形的定义和性质。对于一般性的微分流形,我们需要掌握其拓扑性质、连续性质、切空间与切向量的定义,以及微分的概念。 微分流形初步的学习内容包括拓扑流形的定义,欧几里德流形的性质,切空间与切向量的引入,以及微分的概念。此外,我们还需要了解微分流形上的曲线和切向量场的定义,并且学习如何构造微分流形上的切丛。 在学习微分流形初步的过程中,我们还会接触到微分流形上的流形结构和流形之间的映射。了解微分流形的流形结构对于进一步研究微分流形的性质和应用至关重要。 通过深入学习微分流形初步的内容,我们可以为进一步研究微分流形的各种性质和应用打下基础。微分流形作为微分几何学的核心内容,对于理解和研究曲线、曲面以及其他几何结构有着重要的意义。 总之,微分流形初步的学习内容涉及微分流形的定义、拓扑性质、切空间与切向量、微分以及微分流形上的流形结构等方面。通过系统地学习这些内容,可以为进一步深入研究微分流形以及应用提供坚实的基础。 ### 回答2: 《微分流形初步答案》是一本关于微分流形的书籍,将其以 PDF 格式呈现。微分流形是微分几何学领域中的一个重要概念,它用来描述具有局部欧几里德空间性质的非线性空间。这本书的初步答案部分涵盖了微分流形的基本概念和理论。 首先,该书会介绍流形的定义和性质。流形是一种具有光滑结构的空间,它可以用欧几里德空间的方程来描述。这个定义在实际应用中有很重要的意义,因为很多现实世界中的问题可以用流形来描述。 接着,书中会介绍流形上的切空间和切向量的概念。切空间和切向量是对流形上的点进行刻画的工具,可以用来描述流形上的曲线和切线方向。 此外,书中还会涉及流形上的张量场,如度量张量、曲率张量等。这些概念用来描述流形上的几何性质,比如曲率、距离等。 最后,书中会介绍微分形式和外微分的概念。微分形式是一种关于切向量的函数,用来描述流形上的微分结构。外微分微分形式的推广,通过它可以定义流形上的微积分运算,比如微分、积分等。 总之,《微分流形初步答案》这本书以 PDF 格式呈现,涵盖了微分流形的基本概念和理论,包括流形的定义和性质、切空间和切向量、张量场、微分形式和外微分等内容。这本书对于学习微分流形的人来说是一份有价值的参考资料。 ### 回答3: 微分流形初步指的是微分流形的基本概念和性质。微分流形是数学中一个重要的概念,用于描述具有局部欧几里德空间性质的空间。微分流形的定义是一个拓扑空间,每个点都有一个邻域与欧几里德空间同微分流形可以用来描述物理学中的空间和曲线,也是微积分和拓扑学的重要内容。 微分流形初步答案pdf是一份关于微分流形初步的资料或教材的pdf文件。这份pdf文件可能包含微分流形的基本定义、性质和推导过程等,对于研究微分流形的初学者来说是一份很好的参考资料。学习微分流形初步可以帮助读者理解微分流形的基本概念和性质,为进一步的研究和应用打下基础。 在这份pdf文件中,可能会包含微分流形的定义和例子,如实数轴、平面和球面等。还会介绍微分流形上的切空间、切向量和切丛等重要概念,以及微分流形上的流形函数、向量场和切向量的坐标表示等内容。此外,还可能会介绍微分流形上的微分形式、外微分和流形上的曲线和流形上的积分等内容。 总之,微分流形初步答案pdf是一份关于微分流形初步的资料,通过学习这份资料,读者可以对微分流形的基本概念和性质有一个初步的了解,为深入研究和应用微分流形打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值