李群和李代数

李群与李代数的理解_Eonekne的博客-CSDN博客_李群和李代数

http://cjc.ict.ac.cn/online/onlinepaper/ymd-20157261151.pdf

slam-14/《李群与李代数》讲义-李世雄编着.pdf at master · whydaydayup/slam-14 · GitHub

李群和李代数 —— 名字听起来很猛其实也没那么复杂 - 知乎

https://www.zhihu.com/question/356466246/answer/931315125

想象一下,真实世界数据是多样且复杂度,人们一般会将数据嵌入到流形结构,但传统的欧氏空间的方法就无法起作用。流形结构描述数据很方便,往往没有相应可计算的模型。一般流形学习有两种做法:

  1. 利用流形性质,修改欧式空间方法,使其使用流形空间。
  2. 根据流形结构,将其映射到欧式空间,在利用欧式空间方法解决问题。这种方法往往比较难,一个是流形结构无法把握,可以抽象的流形性质也很难确定,很难找到一个从流形到欧式空间的映射,同理再把欧式空间的计算结果再映射回欧式空间就更难了。

一种折中的方法就是找到一中特定的流形:既能够自然的对数据或其特征进行表示;又能够有许多优良的性质为计算所用。这种特殊的流形结构就是李群。

什么是群?群就是集合和运算。假如是一个群(group),群就应该满足一下几个条件:

  1. 封闭性:。即中任意两个元素经过运算后的结果也是集合内
  2. 结合律:
  3. 幺元(单位元):,即中存在元素,使中元素与之相乘(包括左乘和右乘)结果都等于本身。
  4. 逆元:使就是单位元。

李群(Lie group)是一个具备可微流形性质的群:

  1. 是一个群
  2. G也是一个微分流形
  3. 群的运算也是可微的,即的映射是可微的映射

李群既是一个群,又是一个微分流形,能够在群操作下保持光滑结构。因为它是一个光滑的流形,因此可以利用微积分对其进行研究。李群理论的核心思想就是利用李群的线性化版本来替换全局目标李群。这种局部或线性化表示被M.S.Lie称之为无穷小群,也就是李代数。

         李代数是描述无穷小变换时用到的代数结构。李代数是李群在单位元处的切空间,它能够完全捕获李群的局部结构。一般而言可以将李代数中的元素看做是李群中无限接近于单位元的李群元素。有了李代数的概念,李群能够内看成是局部拓扑等价于向量空间,那这样就可以将向量空间(线性空间)的模型和算法移植到李空间。

         李群和李代数之间的相互转换,使得许多非线性空间问题能够利用李群表示成李代数结构,形成线性空间,这就为非线性问题的线性化表示找到了新的途径,除了利用线性特性构建统计模型之外,李代数还允许沿着李群流形上两点间的最短路径(测地线)引导物体,并且对变换能够给出自然的参数化表示。

李代数是由一个集合,一个数域和一个二元运算组成,二元运算也称之为李括号,如果它们满足以下几条,称为一个李代数,记作:

  1. 封闭性:
  2. 双线性:,有
  3. 自反性:
  4. 雅克比等价:

 

SLAM示例:

空间中任一点(从原点指向这个点的向量)在世界坐标系中的绝对位置表示为,其中是单位正交基底,即两两垂直,长度为单位长度1,

是坐标系下的坐标值。

除了世界坐标系的绝对位置外,还有一个相对自身坐标系的相对位置,同理,这两个坐标系表示的都是同一个点,假定这两个坐标系的原点是相同的,不存在平移,只有旋转。

两侧同时乘以

直接简写为

就是旋转矩阵Rotation,描述的同一坐标值得变换。旋转矩阵是一个行列式为1的正交矩阵,且,旋转矩阵的逆就是自身的转置,表示与其自身相反的旋转。

旋转矩阵是行列式为1的正交矩阵,类比上面的群的描述,旋转变换就是三维空间中,一个特殊正交群(special orthogonal group),

然后我们在假如平移,用齐次坐标表示(原本维向量用维表示)

是变换矩阵(transform matrix),左上角是旋转矩阵,右侧是平移向量,左下角是块,右下角是,旋转和平移都是欧式变换。这就是一个特殊欧式群(special Euclidean group ),,变换矩阵的逆就和旋转的一样,

罗德里格斯公式:为了求出公式(2)中的旋转矩阵,我们要将近使用9个量来表示,但实际上旋转的自由度只有三,罗德里格斯公式期望通过一个旋转轴和旋转角来表示向量的旋转。

 

是就是旋转轴方向上的单位向量,右手方向的旋转角度

我们来分解一下,,也就是拆分成与平行的分量(借助投影来理解)和与垂直的的分量这里垂直于的法向量上的投影就是二次垂直这里面还涉及到右手定则)组成。




这里的矩阵K就是一个反对称矩阵,是旋转轴,也是一个单位向量,。反对称矩阵

我们看上面的图中还有一种表示方式,通过向量加法




 

旋转矩阵就出来了




我们在回到之前的旋转矩阵是随时间变化的,

两侧都对时间开始求导


就是一个反对称矩阵

旋转矩阵在单位元)附近泰勒展开,并将(17)代入


具有一阶导数性质,位于李群正切空间(tangent space)在附近,假设为常数保持不变,则微分方程(17):

(19)就是一个一阶线性微分方程




根据线性常微分方程的解,可以求得(19)旋转矩阵

根据李代数的知识,每个李群都有对应的李代数,李代数描述了李群的局部性质。李代数由一个几何,一个数域和一个二元运算组成,二元运算也称之为李括号。我们将李群对应的李代数表述为

 

其中反对称矩阵,那么二元运算就是,这里是将反变换矩阵转换为向量的形式

证明二元运算:




李代数是一个由三维向量组成的集合,每个向量对应到一个反对称矩阵,李括号为三维向量的外积,可以用来表达旋转矩阵的导数和李群之间的关系

指数映射:

指数的泰勒展开,令;









公式推导到最后就是之前(12)里面的罗斯里格斯公式。所以的李代数就是旋转向量组成的向量空间,指数映射正式罗斯里格斯公式。

李代数可以通过指数映射得到对应的特殊正交群的旋转矩阵

对数映射:

假如说给定了旋转矩阵,如何求反对称矩阵呢:

这个公式蛮复杂的,一般还是用求解旋转矩阵。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值