构建热点数据库

1.CIVIC数据

1.1设置环境文件

下载https://civicdb.org/downloads/nightly/nightly-civicpy_cache.pkl
然后在~/.bash_profile中设置:
export CIVICPY_CACHE_FILE=/path/to/nightly-civicpy_cache.pkl

1.2加载安装python3模块

pip3 install civicpy==1.0.0rc2

1.3生成CIViC所有条目的vcf格式文件

from civicpy import civic, exports
with open('civic_variants.vcf', 'w', newline='') as file:
    w = exports.VCFWriter(file)
    all_variants = civic.get_all_variants()
    w.addrecords(all_variants)
    w.writerecords()

备注:在vcf文件中有对每个位点的具体分类,只提取somatic位点

2.cancergenomeinterpreter数据库

2.1下载变异位点

catalog_of_validated_oncogenic_mutations_latest.zip

2.2获得位点信息

主要是API(https://grch37.rest.ensembl.org/vep/human/hgvs/)获得Chr/Pos/Ref/Alt的信息

备注:原始文件中对每个位点的具体分类,只提取somatic位点

3.Docm数据库

主要是借助该数据库自己的API,按照染色体获得所有变异位点信息,好像该数据库都是人工整理的somatic位点。

4.cosmicclinvar

这两个数据库取交集并限制变异位点在cosmic数据库的CNT>=50,此外在cosmic数据库也就是VCF中注释为SNP的去掉

5.PharmGKB数据库

提取数据库中的rs号(dbsnp_v147),使用annovar的convert2annovar.pl程序转化成染色体位置以及变异信息,并对人群频率数据库进行过滤

以上代码以及相关文件:
https://github.com/fanyucai1/hotspot

发布了20 篇原创文章 · 获赞 0 · 访问量 578
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览