【8-11】树莓派上部署英特尔神经网络计算棒Intel NCS2

如果需要在树莓派上进行神经网络和计算机视觉的操作,仅仅依靠树莓派的性能,是远远不够的。而英特尔神经计算棒就可以用来进行CV的计算,从而在树莓派上部署人脸识别,手势识别之类的CV算法。
注意:

  • 树莓派必须使用树莓派官方系统Raspian。
  • 树莓派上部署的工具包,仅能用来进行计算推理,其余功能需要用笔记本或者台式计算机。
  • 官网的安装目录为 /opt/intel/openvino,也有博客建议安装到自己的本地目录,这里安装在~/intel/openvino

1.驱动安装

1.下载安装包

sudo mkdir -p ~/intel/openvino #建立一个文件夹
wget https://download.01.org/opencv/2020/openvinotoolkit/2020.4/\
  l_openvino_toolkit_runtime_raspbian_p_2020.4.287.tgz 
sudo tar -zxvf l_openvino_toolkit_runtime_raspbian_p_2020.4.287.tgz --strip 1 \ -C ~/intel/openvino

2.安装需要的工具

sudo apt install cmake
sudo apt-get install libgflags-dev

3.设置环境变量

直接将环境变量写入.bashrc文件

echo "source ~/intel/openvino/bin/setupvars.sh" >> ~/.bashrc
source ~/.bashrc 

显示已经初始化完成
[setupvars.sh] OpenVINO environment initialized

4.添加USB规则

不添加规则,树莓派无法访问设备

sudo usermod -a -G users "$(whoami)"

退出重新登录

sh ~/intel/openvino/install_dependencies/install_NCS_udev_rules.sh

2.运行测试

1.创建文件夹编译样例

cd ~/intel/openvino/deployment_tools/inference_engine/samples/c
mkdir build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a"
 make -j4 object_detection_sample_ssd

2.下载权重文件

这里是官方自己的训练权重,以后用自己的模型,也需要提前训练好权重文件,并且转换为计算棒支持的格式
现在的文件夹为:
~/intel/openvino/deployment_tools/inference_engine/samples/c

wget --no-check-certificate https://download.01.org/openvinotoolkit/2018_R4/open_model_zoo/face-detection-adas-0001/FP16/face-detection-adas-0001.bin

wget --no-check-certificate https://download.01.org/openvinotoolkit/2018_R4/open_model_zoo/face-detection-adas-0001/FP16/face-detection-adas-0001.xml

3.运行示例

./armv7l/Release/object_detection_sample_ssd_c -m face-detection-adas-0001.xml -d MYRIAD -i  图片路径
已标记关键词 清除标记
相关推荐
手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8NCS和GOMFCTEMPLATE 9、课程小结,资源分享
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页