学习opencv ,图像分割中分水岭算法的感性认识及cvWatershed例子

原创 2011年09月05日 16:01:11

cvWatershed例子:

#include<cv.h>
#include<highgui.h>
#include<iostream>

using namespace  std;

IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1};
void on_mouse( int event, int x, int y, int flags, void* param )//opencv 会自动给函数传入合适的值
{
	if( !img )
		return;
	if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
		prev_pt = cvPoint(-1,-1);
	else if( event == CV_EVENT_LBUTTONDOWN )
		prev_pt = cvPoint(x,y);
	else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
	{
		CvPoint pt = cvPoint(x,y);
		if( prev_pt.x < 0 )
			prev_pt = pt;
		cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );//CvScalar 成员:double val[4] RGBA值A=alpha
		cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
		prev_pt = pt;
		cvShowImage( "image", img);
	}
}

int main( int argc, char** argv )
{
	char* filename = argc >= 2 ? argv[1] : (char*)"fruits.jpg";
	CvMemStorage* storage = cvCreateMemStorage(0);
	CvRNG rng = cvRNG(-1);
	if( (img0 = cvLoadImage(filename,1)) == 0 )
		return 0;
	printf( "Hot keys: \n"
		"\tESC - quit the program\n"
		"\tr - restore the original image\n"
		"\tw or SPACE - run watershed algorithm\n"
		"\t\t(before running it, roughly mark the areas on the image)\n"
		"\t  (before that, roughly outline several markers on the image)\n" );
	cvNamedWindow( "image", 1 );
	cvNamedWindow( "watershed transform", 1 );
	img = cvCloneImage( img0 );
	img_gray = cvCloneImage( img0 );
	wshed = cvCloneImage( img0 );
	marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
	markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
	cvCvtColor( img, marker_mask, CV_BGR2GRAY );
	cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );//这两句只用将RGB转成3通道的灰度图即R=G=B,用来显示用
	cvZero( marker_mask );
	cvZero( wshed );
	cvShowImage( "image", img );
	cvShowImage( "watershed transform", wshed );
	cvSetMouseCallback( "image", on_mouse, 0 );
	for(;;)
	{
		int c = cvWaitKey(0);
		if( (char)c == 27 )
			break;
		if( (char)c == 'r' )
		{
			cvZero( marker_mask );
			cvCopy( img0, img );//cvCopy()也可以这样用,不影响原img0图像,也随时更新
			cvShowImage( "image", img );
		}
		if( (char)c == 'w' || (char)c == ' ' )
		{
			CvSeq* contours = 0;
			CvMat* color_tab = 0;
			int i, j, comp_count = 0;

			//下面选将标记的图像取得其轮廓, 将每种轮廓用不同的整数表示
			//不同的整数使用分水岭算法时,就成为不同的种子点
			//算法本来就是以各个不同的种子点为中心扩张
			cvClearMemStorage(storage);
			cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
				CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
			cvZero( markers );
			for( ; contours != 0; contours = contours->h_next, comp_count++ )
			{
				cvDrawContours(markers, contours, cvScalarAll(comp_count+1),
					cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
			}
			//cvShowImage("image",markers);
			if( comp_count == 0 )
				continue;
			color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );//创建随机颜色列表
			for( i = 0; i < comp_count; i++ ) //不同的整数标记
			{
				uchar* ptr = color_tab->data.ptr + i*3;
				ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
				ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
				ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
			}
			{
				double t = (double)cvGetTickCount();
				cvWatershed( img0, markers );
				cvSave("img0.xml",markers);
				t = (double)cvGetTickCount() - t;
				printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
			}
			// paint the watershed image
			for( i = 0; i < markers->height; i++ )
				for( j = 0; j < markers->width; j++ )
				{
					int idx = CV_IMAGE_ELEM( markers, int, i, j );//markers的数据类型为IPL_DEPTH_32S
					uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );//BGR三个通道的数是一起的,故要j*3
					if( idx == -1 ) //输出时若为-1,表示各个部分的边界
						dst[0] = dst[1] = dst[2] = (uchar)255;
					else if( idx <= 0 || idx > comp_count )  //异常情况
						dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
					else //正常情况
					{
						uchar* ptr = color_tab->data.ptr + (idx-1)*3;
						dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
					}
				}
				cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );//wshed.x.y=0.5*wshed.x.y+0.5*img_gray+0加权融合图像
				cvShowImage( "watershed transform", wshed );
				cvReleaseMat( &color_tab );
		}
	}
	return 1;
}
运行情况:


同上面分析可看出,因为不相连的标记后,程序在masker中的数值不同

经过分水岭算法后,

不同的标记肯定会在不同的区域中,

例如头发部分,我画了一条线标记 ,, 处理后就把头发部分分割了出来 

还比如胳膊那一块,正好也分割出来了


我对算法的感性认识:
opencv中的算法是先把输入图像转化成梯度图(标量)
如果把梯度图看成是一个地形的话,就会发现,梯度高的地方就成了山脉,梯度低的地方就是山谷
我们经过标记为不同的区域后,
就从各个标记的地方注水进去,注入的水越来越多的时候,就会出现把流过低些的山脉,从而流到别的山谷中,那么他们就连一了一片区域。
区域分割的要求是把不同的标记分割成不同的地方。所以如果一直注水,可能就会覆盖别的区域了。这时算法就采取某种方法,修大坝使标记的不同区域不会因为注水而相连
他们会互不相干的扩张领地,直到把整个领地都扩张完为止。


函数输出时,自己的标记扩张出来的区域都用之前标记的值表示,代表一个区域。 不同的值代表不同的区域
区域与区域之间的边界由由值-1表示.




Opencv分水岭算法——watershed自动图像分割用法

分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特...
  • dcrmg
  • dcrmg
  • 2016-09-11 00:40:26
  • 22014

OpenCV2 使用分水岭算法对图像分割的个人理解 cv::watershed()

本文是基于《opecv2 计算机视觉编程手册》中的案例对分水岭算法进行解读。书中及网络上对标记图像的解释模糊,本文谈了谈个人理解。...
  • u010741471
  • u010741471
  • 2015-04-22 12:37:29
  • 6868

Opencv学习——图像分割之分水岭算法

分水岭算法是比较经典的图像分割算法。最近看到一副区域检测和统计的图像,感觉可以通过分水岭算法进行实现,于是顺便对opencv的分水岭算法进行学习。由于示例是python的代码,没有C++的代码,所以打...
  • Dangkie
  • Dangkie
  • 2017-09-03 10:54:04
  • 2405

Opencv学习之分水岭算法

Opencv学习之分水岭算法 分水岭算法可以将图像中的边缘转化成“山脉”,将均匀区域转化为“山谷”,这样有助于分割目标。 分水岭算法是一种基于拓扑理论的数学形态学的分割方法,其基本...
  • qq_31531635
  • qq_31531635
  • 2017-06-25 10:51:38
  • 1399

opencv关于分水岭算法cvWatershed的运用

分水岭的计算过程是一个迭代标注过程。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。...
  • gdut2015go
  • gdut2015go
  • 2015-05-28 22:46:16
  • 2412

OpenCV库中watershed函数(分水岭算法)的详细使用例程

声明:如果有写的不对的地方欢迎指正! 一、分水岭算法 关于分水岭算法的具体原理我就不说了,网上搜一下很多。OpenCV中的watershed函数实现的分水岭算法是基于“标记”的分割算法,用于解决传统的...
  • SugarAnnie
  • SugarAnnie
  • 2016-11-08 11:03:19
  • 2332

opencv 分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会...
  • qq_30490125
  • qq_30490125
  • 2016-11-06 01:07:43
  • 2243

OpenCV 实现分水岭算法

种子点的标记没有太搞懂,这个算法的速度还是很快的     // watershed_test20140801.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h"...
  • wangyaninglm
  • wangyaninglm
  • 2014-12-11 11:11:34
  • 7039

基于OpenCV的分水岭算法实现

  • 2016年04月28日 16:32
  • 4KB
  • 下载

Opencv之分水岭原理和实现

在很多实际应用中,我们需要分割图像,分割方法有多种经典的分割方法: 一、常见图像分割方法: 1、基于边缘检测的方法:        此方法主要是通过检测区域的边缘进行分割,利用区域之间的特征的不一致性...
  • qq_29540745
  • qq_29540745
  • 2016-09-17 19:17:00
  • 1578
收藏助手
不良信息举报
您举报文章:学习opencv ,图像分割中分水岭算法的感性认识及cvWatershed例子
举报原因:
原因补充:

(最多只允许输入30个字)