[2025-2-24]光刻机、芯片、人工智能、机器人领域国内外学界进展

系列文章目录

[2025-2-19]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-21]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-22/23周末]光刻机、芯片、人工智能、机器人领域国内外学界进展



一、光刻机/半导体领域

  • SPIE 先进光刻+图案化会议在美国召开
    此会议是半导体行业新兴技术的盛会,于2025年2月23日至27日在美国加利福尼亚州圣何塞举行。会议汇集了领先的研究人员,共同探讨光学和EUV光刻、图形化技术、计量学以及半导体制造和相关应用的工艺集成等领域的挑战和突破。

  • 来源:SPIE Advanced Lithography + Patterning

  • 英伟达公司展示了视觉语言大模型在半导体缺陷分类中的应用
    视觉语言模型(VLMs)融合了先进的图像/视频识别和LLMs’对话能力,使人工智能更接近人类智能。在半导体成像领域,这项行业首创的案例研究展示了 VLM 在缺陷分类中的应用,为新解决方案铺平了道路。虽然基于 CNN 的模型长期以来一直被用于半导体应用中的分类任务,但它们通常需要数千张图像,并在新产品、工艺或缺陷类型出现时需要频繁重新训练——尤其是在早期数据收集期间,这些挑战尤为明显。相比之下,我们的方法通过微调 VLM 来增强其对半导体图像的理解,通过少样本学习实现分类,从而减少训练样本数量。此外,我们引入了一个自监督的视觉基础模型(VFM),以最小化的领域特定工程来对缺陷进行分类,有效地解决了半导体成像的多样性和大规模图像分析需求。在本演示中,我们强调了 VLMs 成功应用的几个下游任务,分享了行业首创的例子,并展示了针对实际半导体应用的微调。

  • 来源:GenAI Applications of Vision-Language Models for Semiconductor Defect Classification

  • imec 展示了使用高数值孔径 EUV 单层光刻获得的 20nm 间距金属线的电学良率
    2025 年 2 月 24 日,imec 在 SPIE 会议上展示 20nm 间距金属线结构单曝光高 NA EUV 光刻的首次 电气测试(e-test)结果,蛇形和叉形结构测量显示良好电气收益率,缺陷少。2024 年 8 月曾展示相关逻辑和 DRAM 结构,此次 20nm 金属化线结构良率超 90%。这些结果代表了高数值孔径 EUV 光刻及其相关生态系统(包括先进光刻胶和底层材料、光掩模、计量技术、(非球面)成像策略、光学邻近效应校正(OPC)、以及集成光刻和蚀刻技术)能力的初步验证。imec 将与生态系统合作改进。其生态系统多方合作开发优化技术,e-test 为关键步骤,可助开发减缺陷策略。

  • 来源:Imec demonstrates electrical yield for 20nm pitch metal lines obtained with High NA EUV single patterning


二、芯片领域

  • DVClub Europe 会议

    DVClub Europe 于2月25日举办了一场线上会议,主题为“形式验证的实际应用”。会议汇集了验证工程师、工具供应商和行业专家,探讨形式验证技术在实际应用中的案例。重点内容聚焦形式验证技术的实际应用,为验证工程师提供交流平台。

  • 来源: DVClub Europe Meeting

  • DVCon US 2025 会议

    作为设计与验证工程师、芯片架构师和IP集成商的首要活动,DVCon US 2025 于2025年2月24日至27日在美国圣何塞举行。会议聚焦EDA和AI芯片设计等主题,提供面板讨论、教程、研讨会等多种形式的交流平台。参会者将有机会听取两场主题演讲:

    • Synopsys 系统设计部总经理 Ravi Subramanian 和微软 AI 硅工程副总裁 Artour Levin 将分享他们对“人工智能驱动的普遍智能时代需要新的设计、优化和验证策略”的见解。
    • Rob Aitken将发表关于“EDA 在美国经济安全中的作用”的演讲。他的演讲将关注 EDA 行业的更广泛影响,强调其进步和个别贡献远远超出了交付下一颗芯片。
  • 来源: DVCon US 2025

  • 西门子在DVCon展示了其芯片领域的最新技术

    西门子展示了人工智能技术在其芯片领域应用的最新进展,同时也发表了芯片相关最新技术。

  • 来源: DVCon 2025: A must for hardware design and verification engineers
    DVCon 2025

  • 谷歌:从摇篮到坟墓的 AI 硬件碳足迹分析

    专用硬件加速器有助于人工智能(AI)的快速发展,其效率影响 AI 的环境可持续性。谷歌研究人员首次发表了全面的人工智能加速器生命周期评估(LCA)报告,包括首次发布人工智能加速器制造过程中的排放数据。分析了五款张量处理单元(TPU)分析涵盖了硬件生命周期的所有阶段——从原材料提取、制造和废弃,到开发、部署和 AI 模型服务过程中的能耗。利用第一方数据,它提供了迄今为止对 AI 硬件环境影响最全面的评估。

  • 来源: Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends


三、人工智能领域

  • 寻求可持续人工智能的愿景

    Nature Machine Intelligence期刊发表题为Seeking visions for sustainable AI的文章,摘要为世界各国大力投资人工智能,其可持续发展需在全球议程中更受重视。今年2月10日至11日巴黎人工智能行动峰会举行,众多领导人参与,竞争开发强大模型的态势加剧,至少60国签署AI安全等宣言,770个提案中50个获资助。
    AI对环境影响渐显,数据中心电力需求占比1%且将增长。Hugging Face提出AI能源评级方法,创建标准数据集比较能效。强大且能耗低的DeepSeek模型问世,但大型模型开发等长期影响不明。
    莱奥妮·博塞特和乌尔夫·洛呼吁确定LLMs总体可持续性影响,评估生态成本与收益、生态与其他方面关系。尽管巴黎峰会未充分关注AI可持续发展和环境影响,但未来几年这将是快速发展的重要话题。

  • 来源: Seeking visions for sustainable AI

  • DeepSeek-R1模型复现与创新

    量化机构九坤投资与微软亚洲研究院合作,首次成功复现DeepSeek-R1模型,并在强化学习领域提出创新性见解。该成果验证了模型的可扩展性和低成本训练路径。论文摘要:
    nspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in large reasoning models. To analyze reasoning dynamics, we use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification. We make some key technical contributions that lead to effective and stable RL training: a system prompt that emphasizes the thinking and answering process, a stringent format reward function that penalizes outputs for taking shortcuts, and a straightforward training recipe that achieves stable convergence. Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus. Remarkably, after training on just 5K logic problems, it demonstrates generalization abilities to the challenging math benchmarks AIME and AMC.
    受 DeepSeek-R1 成功启发,我们探索了基于规则的强化学习(RL)在大推理模型中的潜力。为了分析推理动态,我们使用合成的逻辑谜题作为训练数据,因为它们的复杂度可控且答案验证简单。我们做出了一些关键技术贡献,这些贡献导致了有效且稳定的 RL 训练:一个强调思考和回答过程的系统提示,一个严格的格式奖励函数,该函数惩罚了走捷径的输出,以及一个简单的训练方案,实现了稳定的收敛。我们的 7B 模型发展了高级推理技能,如反思、验证和总结,这些技能在逻辑语料库中是缺失的。令人惊讶的是,在仅训练了 5K 个逻辑问题后,它就展示了将泛化能力应用于具有挑战性的数学基准 AIME 和 AMC。

  • 来源: Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning


四、机器人领域

  • HTX(科技创新机构)对机器人和人工智能的分析

    新加坡科技创新机构HTX于2025年2月21日发布了一篇题为《机器人和人工智能的硬道理》的文章,分析了当前机器人技术的发展现状,指出当前机器人技术在流畅性和智能人机交互方面仍有局限性,并展望了未来机器人技术的发展趋势,例如人形机器人警察在短期内还难以实现,并探讨了实现更先进机器人的障碍。
    机器人仍然缺乏与周围环境良好互动的能力。如今,我们的结构化环境(即建筑、楼梯、电梯、斜坡、道路、小径和走廊)是根据人类的移动和人体工程学需求建造的。此外,人类的生物力学使我们能够导航非结构化环境,如起伏和崎岖的地形。在机器人中复制这种生物力学是许多仍在努力解决的问题之一。然后是触觉问题。机器人无法像人类那样抓住物体,因为存在许多尚未解决的计算、感知和机械挑战。

    • 来源: [Hard truths about robots and AI]
  • 中国科学:信息科学关于大型语言模型的调查报告

    《中国科学:信息科学》在2025年2月发表了一篇综述文章,探讨了基于大型语言模型的智能体的兴起和潜力。
    长期以来,研究人员一直在寻求能够匹敌甚至超越人类智能的人工智能 (AI)。人工智能代理是能够感知环境、做出决策和采取行动的人工实体,被视为实现这一目标的一种手段。人们为开发人工智能代理付出了巨大的努力,主要侧重于改进算法或训练策略,以提高特定技能或特定任务的执行能力。然而,该领域缺乏一个足够通用和强大的模型来作为构建适应不同场景的通用代理的基础。大型语言模型 (LLM) 凭借其多功能性,为通用人工智能代理的发展铺平了一条有希望的道路,并且在基于 LLM 的代理领域已经取得了实质性进展。在本文中,我们对基于 LLM 的代理进行了全面的调查,涵盖了它们的构建框架、应用场景以及基于 LLM 的代理构建的社会的探索。我们还总结了这个蓬勃发展的领域的一些潜在的未来方向和未解决的问题。

  • 来源: The rise and potential of large language model based
    agents: a survey

  • 深圳人形机器人完成全球首例前空翻

  • 深圳众擎科技完成全球首例人形机器人前空翻特技,展示了众擎机器人不仅行走优雅稳定,还具有高速动态的实力。据团队介绍,机器人的前空翻动作,比奔跑更能展现这款机器人的本体硬件潜力和算法团队的实力。

  • 来源: 别眨眼!深圳人形机器人完成全球首例前空翻


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

demaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值