Scikit-learn_成分分解与降维_因子分析

该博客探讨了因子分析在数据预处理中的应用,特别是在随机森林分类任务中。首先介绍了因子分析的基本概念,包括探索性因子分析(EFA)和验证性因子分析(CFA),它们用于从多个变量中提取潜在因子。接着,通过一个随机森林分类的实例,展示了如何利用因子分析降低特征维度,分别将特征降至16个和8个,然后观察分类性能的变化。实验结果显示,降低特征维数可能对模型性能产生积极影响。
摘要由CSDN通过智能技术生成

一.描述

  • 因子分析是研究从变量群中提取共性因子的统计技术,主要是用来描述隐藏在一组测量到的变量中的一些更基本的、但又无法直接测量到的隐形变量。
  • 因子分析又分为探索性因子分析和验证性因子分析两个方向
    • 探索性因子分析是不确定多个自变量中有几个因子,通过各种方法视图找到这些因子
    • 验证性因子分析是已经假设自变量中有几个因子,试图通过这种方法来验证假设是否正确
  • 因子分析本质上是主成分分析的扩展。相对于主成分分析,因子分析更倾向于描述原始变量之间的相关关系,也就是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法

二.实例

  • 使用随机森林分类

    from sklearn.datasets import load_digits
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import cross_val_score
    X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值