一.描述
- 因子分析是研究从变量群中提取共性因子的统计技术,主要是用来描述隐藏在一组测量到的变量中的一些更基本的、但又无法直接测量到的隐形变量。
- 因子分析又分为探索性因子分析和验证性因子分析两个方向
- 探索性因子分析是不确定多个自变量中有几个因子,通过各种方法视图找到这些因子
- 验证性因子分析是已经假设自变量中有几个因子,试图通过这种方法来验证假设是否正确
- 因子分析本质上是主成分分析的扩展。相对于主成分分析,因子分析更倾向于描述原始变量之间的相关关系,也就是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法
二.实例
-
使用随机森林分类
from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score X