一、效度分析
CFA(验证性因子分析)的基本思想是:研究者首先根据先前的理论和已有的知识,经过推论和假设,形成一个关于一组变量之间相互关系的模型。其目的是利用变量的实测数据来验证假设模型的有效性。
二、具体情况具体分析
上两篇文章,我们主要描述了第一种情况,即问卷中没有多维度量表,本文将继续就多维度量表的验证性因子分析进行描述。
第二类:假设模型有多维度量表
不妨假设有自变量A,因变量B,中介变量C,且三个变量都为多维度量表,其中A有AI与AT两个维度,B有BI、BT和BL三个维度,C有CI与CT两个维度。题项情况如下表。
变量 | 维度 | 题项 | |
A | 2 | AI | 6 |
AT | 5 | ||
B | 3 | BI | 3 |
BT | 4 | ||
BL | 3 | ||
C | 2 | CI | 4 |
CT | 3 |
第一步:应用AMOS进行验证性因子分析,在绘图区构建模型如下图7。由于该问卷中的三个变量都属于多维度变量,因此采用高阶验证性因子分析。与上面的第一种情况不同的是:(1)每一个维度都需要加上残差项(例如图2中的e29~e35)(图3)。(2)将每一变量中的其中一个维度的路径回归权重调整为1(图4)。
第二步:由于该模型中存在多维度量表,因此需对这些量表进行单独汇报。除了整体模型的效度检验结果,还需汇报A、B、C三个变量的效度检验结果,如下。
首先依据图2模型确定因子载荷值、CR值、AVE值、整体拟合度等数据,而后对多维度量表进行