验证性因子分析(三)

本文详细介绍了验证性因子分析(CFA)在处理多维度量表时的具体步骤和注意事项,包括如何构建高阶验证性因子分析模型,如何单独评估每个变量的效度,并提供了汇报模板和区别效度的比较方法,强调一切以假设为准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、效度分析

CFA(验证性因子分析)的基本思想是:研究者首先根据先前的理论和已有的知识,经过推论和假设,形成一个关于一组变量之间相互关系的模型。其目的是利用变量的实测数据来验证假设模型的有效性。

图1 效度分析流程图

二、具体情况具体分析

上两篇文章,我们主要描述了第一种情况,即问卷中没有多维度量表,本文将继续就多维度量表的验证性因子分析进行描述。

第二类:假设模型有多维度量表

不妨假设有自变量A,因变量B,中介变量C,且三个变量都为多维度量表,其中A有AI与AT两个维度,B有BI、BT和BL三个维度,C有CI与CT两个维度。题项情况如下表。

表1 题项情况
变量 维度 题项
A 2 AI 6
AT 5
B 3 BI 3
BT 4
BL 3
C 2 CI 4
CT 3

第一步:应用AMOS进行验证性因子分析,在绘图区构建模型如下图7。由于该问卷中的三个变量都属于多维度变量,因此采用高阶验证性因子分析。与上面的第一种情况不同的是:(1)每一个维度都需要加上残差项(例如图2中的e29~e35)(图3)。(2)将每一变量中的其中一个维度的路径回归权重调整为1(图4)。

图2 结构方程模型(总)

图3 残差

图4 路径回归权重

第二步:由于该模型中存在多维度量表,因此需对这些量表进行单独汇报。除了整体模型的效度检验结果,还需汇报A、B、C三个变量的效度检验结果,如下。

首先依据图2模型确定因子载荷值、CR值、AVE值、整体拟合度等数据,而后对多维度量表进行

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨笨脑袋瓜子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值