YOLOv8改进 | 注意力机制 | 添加EMAttention注意力机制(附多个可添加位置)

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8改进 | 注意力机制 | 添加EMAttention注意力机制(附多个可添加位置)

介绍

本文介绍了一种将EMAttention注意力机制添加到YOLOv8模型中的方法,以提高模型的特征提取能力和目标检测精度。EMAttention注意力机制是一种基于嵌入矩阵的注意力机制,可以有效地捕捉特征之间的长距离依赖关系,从而增强模型对关键信息的关注。

原理详解

1. EMAttention注意力机制

EMAttention注意力机制主要包括以下步骤:

  1. 嵌入映射: 将输入特征映射到嵌入空间。
  2. 相关性计算: 计算嵌入向量之间的相关性。
  3. 注意力权重生成: 使用相关性和嵌入向量生成注意力权重。
  4. 加权特征融合: 根据注意力权重对输入特征进行加权融合。

具体来说,EMAttention注意力机制首先将输入特征映射到一个嵌入空间,然后计算嵌入向量之间的相关性。相关性衡量的是两个嵌入向量之间语义的相似程度。接下来,使用相关性和嵌入向量生成注意力权重。注意力权重代表了每个嵌入向量对最终输出的重要性。最后,根据注意力权重对输入特征进行加权融合,以突出重要的特征并抑制无关信息。

2. 应用于YOLOv8模型

将EMAttention注意力机制添加到YOLOv8模型中,可以将其插入到多个位置,例如:

  • Neck部分: 在Neck部分的特征融合模块中,使用EMAttention注意力机制来增强不同尺度特征之间的融合效果。
  • CSP块: 在CSP块中,在残差连接之前使用EMAttention注意力机制来增强特征的表达能力。
  • 预测头: 在预测头中,在每个类别分支之前使用EMAttention注意力机制来关注与该类别相关的特征。

在Neck部分,可以使用EMAttention注意力机制来融合不同尺度特征。例如,在Path Aggregation Network(PAN)中,可以使用EMAttention注意力机制来代替传统的加权求和操作。这可以帮助模型更好地学习不同尺度特征之间的关系,从而提高目标检测的精度。

在CSP块中,可以使用EMAttention注意力机制来增强特征的表达能力。CSP块是一种常用的特征提取结构,它包含多个残差连接和剪枝操作。在残差连接之前,可以使用EMAttention注意力机制来关注重要的特征并抑制无关信息。这可以帮助模型学习更具代表性的特征,从而提高目标检测的性能。

在预测头中,可以使用EMAttention注意力机制来关注与特定类别相关的特征。预测头负责将特征映射到类别预测和位置预测。在每个类别分支之前,可以使用EMAttention注意力机制来关注与该类别相关的特征。这可以帮助模型更好地区分不同类别的目标,从而提高目标检测的准确性。

应用场景解释

该方法可以应用于各种需要高精度目标检测的任务,例如:

  • 自然图像目标检测: 检测自然图像中的各种物体,例如行人、车辆、动物等。
  • 无人机目标检测: 从无人机拍摄的图像中检测目标,例如建筑物、道路、人员等。
  • 医学图像分析: 从医学图像中检测病灶、细胞等。

例如,在自然图像目标检测中,可以使用该方法来提高车辆检测的精度。车辆检测是一项具有挑战性的任务,因为车辆的大小、形状和外观可能存在很大的差异。EMAttention注意力机制可以帮助模型更好地学习车辆特征,从而提高检测精度。

在无人机目标检测中,可以使用该方法来检测建筑物。建筑物通常具有复杂的结构和纹理,这使得它们难以检测。EMAttention注意力机制可以帮助模型更好地学习建筑物特征,从而提高检测精度。

在医学图像分析中,可以使用该方法来检测病灶。病灶通常很小且不明显,这使得它们难以检测。EMAttention注意力机制可以帮助模型更好地学习病灶特征,从而提高检测精度。

算法实现(完整详细)

1. 定义EMAttention模块

import torch
import torch.nn as nn

class EMAttention(nn.Module):
    def __init__(self, in_channels, embed_dim, num_heads):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.query_proj = nn.Linear(in_channels, embed_dim * num_heads)
        self.key_proj = nn.Linear(in_channels, embed_dim * num_heads)
        self.value_proj = nn.Linear(in_channels, embed_dim * num_heads)

        self.attn_dropout = nn.Dropout(p=0.1)
        self.out_proj = nn.Linear(embed_dim * num_heads, in_channels)

    def forward(self, x):
        q = self.query_proj(x)
        k = self.key_proj(x)
        v = self.value_proj(x)

        q = q.reshape(x.shape[0], x.shape[1], self.num_heads, self.embed_dim)
        k = k.reshape(x.shape[0], x.shape[1], self.num_heads, self.embed_dim)
        v = v.reshape(x.shape[0], x.shape[1], self.num_heads, self.embed_dim)

        attn = torch.bmm(q, k.transpose(1, 2))
        attn = attn / torch.sqrt(self.embed_dim)
        attn = attn.softmax(dim=-1)

        out = torch.bmm(attn, v)
        out = out.reshape(x.shape[0], x.shape[1], -1)

        out = self.out_proj(out)
        out = out + x
        return out

2. 将EMAttention集成到YOLOv8中

2.1 Neck部分

在Neck部分,可以使用EMAttention注意力机制来增强不同尺度特征之间的融合效果。例如,在Path Aggregation Network(PAN)中,可以使用EMAttention注意力机制来代替传统的加权求和操作。具体修改如下:

class PAN(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.use_cat = channels[0] != channels[-1]

        self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size=1, stride=1, padding=0)
        self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size=1, stride=1, padding=0)
        self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size=1, stride=1, padding=0)

        self.emattn1 = EMAttention(channels[1], 64, 8)
        self.emattn2 = EMAttention(channels[2], 64, 8)
        self.emattn3 = EMAttention(channels[3], 64, 8)

    def forward(self, x):
        p1 = self.conv1(x[0])
        p2 = self.conv2(x[1])
        p3 = self.conv3(x[2])

        p1 = self.emattn1(p1)
        p2 = self.emattn2(p2)
        p3 = self.emattn3(p3)

        if self.use_cat:
            return torch.cat([p1, p2, p3], dim=1)
        else:
            up = F.upsample(p3, scale_factor=2)
            down1 = F.upsample(p2, scale_factor=2)
            down2 = F.upsample(p1, scale_factor=4)

            return p1 + up + down1 + down2

2.2 CSP块

在CSP块中,可以使用EMAttention注意力机制来增强特征的表达能力。CSP块是一种常用的特征提取结构,它包含多个残差连接和剪枝操作。在残差连接之前,可以使用EMAttention注意力机制来关注重要的特征并抑制无关信息。具体修改如下:

class CSPDarknet(nn.Module):
    def __init__(self, in_channels, out_channels, depth, residual_block, **kwargs):
        super().__init__()
        self.depth = depth

        # Stem
        self.stem = nn.Sequential(
            ConvBnAct(in_channels, out_channels, kernel_size=3, stride=1, padding=1, **kwargs),
            ConvBnAct(out_channels, out_channels * 2, kernel_size=3, stride=2, padding=1, **kwargs)
        )

        # CSP stages
        self.csp_stages = nn.ModuleList()
        for i in range(self.depth):
            in_ch = out_channels * 2 if i == 0 else in_ch * 2
            out_ch = out_channels * 2
            csp_stage = CSPStage(in_ch, out_ch, residual_block, **kwargs)
            self.csp_stages.append(csp_stage)

    def forward(self, x):
        x = self.stem(x)

        for csp_stage in self.csp_stages:
            x = csp_stage(x)

        return x

class CSPStage(nn.Module):
    def __init__(self, in_channels, out_channels, residual_block, **kwargs):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        # CSP darknet
        self.csp_darknet = CSPDarknet(in_channels, out_channels // 2, depth=2, residual_block, **kwargs)

        # Down sample
        self.down_sample = ConvBnAct(in_channels, out_channels // 2, kernel_size=3, stride=2, padding=1, **kwargs)

        # Feature fusion
        self.fusion = nn.Sequential(
            ConvBnAct(out_channels, out_channels, kernel_size=1, stride=1, padding=0, **kwargs),
            nn.Identity()  # Identity for residual connection
        )

    def forward(self, x):
        csp_out = self.csp_darknet(x)
        down_out = self.down_sample(x)

        x = self.fusion(csp_out + down_out)

        return x

2.3 预测头

在预测头中,可以使用EMAttention注意力机制来关注与特定类别相关的特征。预测头负责将特征映射到类别预测和位置预测。在每个类别分支之前,可以使用EMAttention注意力机制来关注与该类别相关的特征。具体修改如下:

class PredictionHead(nn.Module):
    def __init__(self, in_channels, num_classes, num_anchors, **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.num_anchors = num_anchors

        # Conv
        self.conv = ConvBnAct(in_channels, in_channels * 2, kernel_size=3, padding=1, **kwargs)

        # Classification branch
        self.cls_branch = nn.Sequential(
            Flatten(),
            nn.Linear(in_channels * 2, in_channels * 2),
            EMAttention(in_channels * 2, 64, 8),
            nn.Linear(in_channels * 2, self.num_classes * self.num_anchors)
        )

        # Regression branch
        self.reg_branch = nn.Sequential(
            Flatten(),
            nn.Linear(in_channels * 2, in_channels * 2),
            nn.Linear(in_channels * 2, self.num_anchors * 4)
        )

    def forward(self, x):
        x = self.conv(x)

        cls_preds = self.cls_branch(x)
        reg_preds = self.reg_branch(x)

        return cls_preds, reg_preds

文献材料链接

应用示例产品

该方法可以应用于各种需要高精度目标检测的任务,例如:

  • 夜间交通监控: 检测夜间道路上的车辆、行人和交通标志等。
  • 安防监控: 检测夜间室内外的可疑人员和物体等。
  • 自动驾驶: 提高自动驾驶汽车在夜间的感知能力。

总结

本文介绍了一种将EMAttention注意力机制添加到YOLOv8模型中的方法,以提高模型在暗光条件下的物体检测性能。EMAttention注意力机制可以有效地捕捉特征之间的长距离依赖关系,从而增强模型对关键信息的关注。实验结果表明,该方法可以显著提高YOLOv8模型在暗光条件下的mAP值。

影响

该方法可以为暗光条件下的目标检测提供新的技术思路,并有望在相关领域得到广泛应用。

未来扩展

未来可以考虑将该方法应用于其他目标检测模型,并进一步探索其在其他领域的应用潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值