基于PyTorch+Attention注意力机制实现天气变化的时间序列预测
介绍
天气变化的时间序列预测是一项重要的任务,广泛应用于农业、交通、能源管理等领域。近年来,深度学习技术在时间序列预测中表现出色,尤其是结合Attention注意力机制的方法。
应用使用场景
- 农业:精准预测降雨,有助于制定合理的灌溉计划。
- 交通:提前预知恶劣天气,帮助交通管理部门做好应对准备。
- 能源管理:根据天气变化调整能源供应,提高能源利用效率。
要实现上述功能,可以使用Python结合一些常用的库,如requests
获取天气数据,pandas
进行数据处理。下面是每个功能对应的代码示例。
1. 农业:精准预测降雨
示例代码
import requests
def