运营商电信行业BSS发展浅析

       电信从老97开始,一直到现在的CNOS规范,经历了几次大的系统变革,结合个人经验大概总结为如下几个时期。

    一、老97时期,也是中国IT建设最早最系统的一批,利用信息技术支撑业务流转,保障业务数据的信息留存。以地市及为单位,建立各自的IT系统。基本上是从前台信息管理,中台订单拆分,后台业务开通,最后费用计算实现前后一体的信息收集。确保人、事能记录,流程可转,费用可记。

  二、省公司集约时代。这个也可成为省级信息系统的1.0版本。以B/S模式建立一套从套餐设置、客户管理、资料管理、服务拆分、网元开通、费用计算,账务缴费为一体的全流程的信息系统。逐步形成了电信业务的基本格局。围绕市场策略、营业受理、业务开通、收费为一体的服务流程。在很长一段时间内强力的支撑的电信业务的发展。期间由于电信购买CDMA业务强力的加入,很大程度上推进了电信的产品架构的完善,形成了以固化、宽带、CDMA、IPTV为融合套餐,以固网为依托,C网为发力点,对电信的业务有个突飞猛进的增长。

三、集团尝试集约,省内尝试技术创新。随着业务的发展,特别是手机业务的增长,国家对国内漫游费用的控制,电信集团逐步意识到集约的必要性。因此从13年开始,集团开始着手落实手机业务的集约,可在集团统一进行办理,只要选择对应的省份即可。省内推广业务成为能力的补充,形成1+N的手机业务发展模式。又加互联网平台的兴起,给业务的发展创造的很好的土壤,因此C网业务一点集中发展,多省个性营销模式逐步形成。

        两级业务发展的模式自然带来一些新的冲突,比如两级资料的一致性,资源的匹配,以及服务流程的标准化。种种因素之下,促进了BSS2.0的应运而生。从系统架构,安全管控,两级交互以及费用计量(手机业务的大力发展客户量逐步增长)迫切需要进行次大的升级改造才有可能解决这些问题。所以2.0系统在集团规范的统一指引之下,各地都开始了2.0的系统建设推广。

四、业务发展和技术催生的3.0时代。2.0升级后,电信业务也迎来了一波新的增长,特别是手机业务,围绕各种套餐的组合和花样玩法获得不少增量用户。但是随着增量市场的逐渐缩小,存量市场的二次激活和抢盘机制就迫在眉睫了。如何快速激活沉默用户,如果提升存量用户价值,策反异网用户的加入成为业务发展部门要考虑的因素。当然系统支撑上要考虑在先,IT能力的支撑,数据分析的准确度,营销策略的合理性乃至服务的创新和优化成为新的课题。所以3.0系统在用户感知、营销支撑、服务优化、数据收集于分析方面做了大量的工作和提升。当然从企业的要求上来说也满足了业务和时代发展的要求。

          这是几个时期的发展,其实从技术方面每个时期也做了很大的调整,随着国家、行业以及新技术诞生的要求,下次我们在进行分析探讨。

   

目 录 1 报告摘要 11 2 研究背景与研究方法 13 2.1 研究背景 13 2.2 研究范畴 14 2.3 相关定义 14 2.3.1 中国电信运营支撑系统 14 2.3.2 系统承建商 15 2.3.3 系统供应商 15 2.3.4 运营指标统计定义 15 2.3.5 固定资产投资规模统计定义 15 2.4 研究方法 16 2.4.1 一手资料 16 2.4.2 二手资料 16 2.5 本报告的解释权 16 3 中国电信运营支撑系统发展环境 17 3.1 2008行业政策与法规 17 3.2 2008行业变革与调整 18 3.3 2008运营商市场竞争环境 21 3.3.1 2008电信业市场运营环境 21 3.3.2 电信业业务发展趋势 24 3.4 2008中国运营商投资状况 27 3.5 2009中国运营商投资预测 28 4 中国移动运营支撑系统市场研究 29 4.1 业务现状与发展 29 4.1.1 业务发展现状 29 4.1.2 全业务策略分析 33 4.1.3 3G业务模式分析 36 4.1.4 中国移动SWOT分析 40 4.2 运营支撑系统建设现状与发展趋势 43 4.2.1 运营支撑系统建设影响因素 43 4.2.2 NGBOSS规划体系和演进方向 47 4.2.3 运营支撑系统建设现状与投资规模 57 4.3 重点省级公司运营支撑系统建设研究 91 4.3.1 广东移动 91 4.3.2 浙江移动 96 4.3.3 江苏移动 100 4.3.4 山东移动 104 4.3.5 河南移动 108 4.3.6 四川移动 112 4.3.7 北京移动 113 4.3.8 上海移动 117 5 中国电信运营支撑系统市场研究 119 5.1 业务现状与发展 119 5.1.1 业务发展现状 119 5.1.2 全业务策略分析 120 5.1.3 3G业务模式分析 128 5.1.4 中国电信SWOT分析 140 5.1.5 3G业务SWOT分析 143 5.2 运营支撑系统建设现状与发展趋势 148 5.2.1 运营支撑系统建设影响因素 148 5.2.2 CTG-MBOSS规划体系和演进方向 151 5.2.3 运营支撑系统建设现状与投资规模 159 5.3 重点省级公司运营支撑系统建设研究 177 5.3.1 广东电信 177 5.3.2 浙江电信 183 5.3.3 江苏电信 189 5.3.4 四川电信 191 5.3.5 上海电信 195 5.3.6 吉林电信 199 5.3.7 北京电信 201 6 中国联通运营支撑系统市场研究 203 6.1 业务现状与发展 203 6.1.1 业务发展现状 203 6.1.2 全业务策略分析 204 6.1.3 3G业务模式分析 208 6.1.4 中国联通SWOT分析 210 6.2运营支撑系统建设现状与发展趋势 214 6.2.1运营支撑系统建设影响因素 214 6.2.2 NEW-BSS规划体系和演进方向 215 6.2.3运营支撑系统建设现状与投资规模 219 6.3 重点省级公司运营支撑系统建设研究 225 6.3.1 广东联通 225 6.3.2 浙江联通 227 6.3.3江苏联通 228 6.3.4 山东联通 230 6.3.5 黑龙江联通 233 6.3.6 四川联通 236 6.3.7 辽宁联通 237 7中国电信运营支撑市场格局及竞争态势 239 7.1 运营支撑市场发展环境 239 7.2 主要厂商及其市场定位 239 7.2.1 咨询服务商 240 7.2.2系统集成商 242 7.2.3 软件厂商 244 7.2.4 硬件厂商 245 7.3 各类厂商市场格局和竞争态势 245 7.4 重点厂商市场与动态研究 249 7.4.1 亚信 249 7.4.2 联创 254 7.4.3 神州数码思特奇 257 7.4.4 华为软件 260 7.4.5 中兴软创 264 7.4.6 东软 266 7.4.7 Amdocs 269 7.4.8 Convergys 272 7.4.9 HP 273 7.4.10 IBM 276 7.4.11 Oracle 279 7.4.12 EMC 281 7.4.13 埃森哲 282 结束语 285 表 目 录 表3-1 2008年中国电信业重组进程 19 表3-2 2008年运营商重组前后实力对比 21 表3-3 主要国家宽带用户渗透率和网速对比(2007年) 24 表3-4 主要国家宽带网速对比 24 表3-5 2003年-2008年中国电信固定资产投资及增长率 27 表4-1 中国移动2008年上半年总体运营情况 30 表4-2 中国移动收入明细表 32 表4-
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值