GPT模型调优:探索Top-k、Top-p与Temperature参数

Top-k抽样 模型从最可能的"k"个选项中随机选择一个 如果k=10,模型将从最可能的10个单词中选择一个
Top-p抽样 模型从 累计概率大于或等于“p”的最小集合 中随机选择一个 如果p=0.9,选择的单词集将是 概率累计到0.9的那部分
Temperature 控制生成文本随机性的参数。较高的温度值会产生更随机的输出,而较低的温度值则会使模型更倾向于选择最可能的单词 较高的温度值,如1.0,会产生更随机的输出,而较低的温度值,如0.1,会使模型更倾向于选择最可能的单词

前言

上一篇文章介绍了几个开源LLM的环境搭建和本地部署,在使用ChatGPT接口或者自己本地部署的LLM大模型的时候,经常会遇到这几个参数,本文简单介绍一下~

  • temperature
  • top_p
  • top_k
关于LLM

上一篇也有介绍过,这次看到一个不错的图

A recent breakthrough in artificial intelligence (AI) is the introduction of language processing technologies that enable us to build more intelligent systems with a richer understanding of language than ever before. Large pre-trained Transformer language models, or simply large language models, vastly extend the capabilities of what systems are able to do with text.

LLM看似很神奇,但本质还是一个概率问题,神经网络根据输入的文本,从预训练的模型里面生成一堆候选词,选择概率高的作为输出,上面这三个参数,都是跟采样有关(也就是要如何从候选词里选择输出)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值