LLM超参数temperature,top-p使用

temperature

temperature用于调整模型softmax输出层的概率的平滑度,温度越高,概率分布越平滑;温度越低,概率分布越尖锐

所以较低的温度代表了确定性,适用于需要确定性答案或稳定效果的场景,如nl2sql,代码生成等;

较高的温度代表了随机性,适用于需要较大发挥空间的场景,如诗歌创作等。

top-p

大模型选择输出token的时候,会有一个采样策略,用于选择输出哪些token,其中两种主要的采样方法就是top-k和top-p

top-p原理:

从概率加起来之和为p的top token中采样,称作top-p;该策略动态设置tokens候选列表的大小。这种称为Nucleus Sampling 的方法将可能性之和不超过特定值的top tokens列入候选名单。下图是top-p=0.15的例子:

使用建议

  • 从上面的原理可以看到,temperature、top-p等参数用于控制生成文本的随机性,值越大随机性越大,意味着多样性和创造性,但可能产生胡言乱语。值越

### 如何指导大型语言模型(LLM)以获得最佳性能和使用 为了使大型语言模型(LLM)发挥最优性能并有效利用其功能,需遵循一系列策略和技术要点。 #### 设定清晰的任务指令 确保向LLM提供具体而明确的指示至关重要。模糊不清或含糊的任务描述可能导致不准确的结果。例如,在请求生成特定类型的文本时,应指明所需的风格、长度和其他任何相关参数[^1]。 #### 控制输出质量 采用核心抽样方法可以控制生成文本的质量。通过设置`p=0.9`以及调整温度参数至`0.7`左右,可以在保持创造力的同时减少不合理响应的概率。这种方法有助于平衡多样性和连贯性之间的关系[^3]。 #### 调整超参数配置 对于不同应用场景下的需求差异,合理调节诸如学习率、批次大小等训练过程中的超参数同样重要。这些因素直接影响到最终产出的效果及效率。然而具体的优化方案取决于所使用的框架及其特性[^2]。 #### 利用预处理数据集 当涉及到微调已有模型或是构建新的专用版本时,准备高质量的数据集必不可少。这不仅涉及收集足够的样本量,还包括清洗噪声、标注类别等工作,从而提高针对性任务上的表现水平。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "your_model_path" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "指导大型语言模型的最佳实践包括:" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, do_sample=True, max_length=50, top_p=0.9, temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值