Using Adversarial Attacks to Reveal the Statistical Bias in Machine Reading Comprehension Models 论文

创新点

无监督的电商生成评论总结rating-wise and aspect-wise summaries from reviews.

方法

用SQuAD 1.1 finetune BERT/DistilBERT。

BERT 然后两个线性层预测开始和结束

观点抽取

1. 人工抽取商品特征,只使用计算机、平板、台式机

一共十个特征

Display, Memory, Speaker, Sound, Processor, WiFi, Battery, Brand, Operating System, and Camera

2. 构造两类问题,在十个特征上提问,用SQuAD的方法抽取观点。

How is [feature]?

What is opinion on [feature]?

即 评论 r = (r1,...,rm). 问题q = (q1,...,qn),输出是评论中的span,作为观点。

 

总结模型

用了两个 Copycat和DistilBART

 

DistilBART-12-6-cnn

在CNN/Dailymail和Extrteme Summarization 数据集上训

 

Copycat公式

c是产品的向量表示,avg得到c*,z是评论的向量表示,avg得到z*

利用pointer-generator network 网络生成评论,

pointer-generator network 保持了两个词概率分布,

1. 假设词是从固定的词表中选的

2. 捕获从别的评论中复制词的概率

整体框架

验证方法

情感准确度

在Amazon Reviews Dataset’s Electronic Category 上训练情感分类器,

BERT+dense(6分类,0-5,表示拥护对产品的打分)

 

对模型的打分,是综合预测的情感得分和评论的平均得分之间的差异。

是第i个总结计算的情感得分,是第j个评论的排名,K是用于生成总结的评论数,N是总共的总结数

即用模型对总结summary和生成这个总结summary对应的reviews进行情感打分,希望生成的总结的情感和生成这个总结的review平均情感相似。

ROUGE Scores

为了衡量模型生成的总结中包含有评论中相似的信息。用ROUGE-1(unigram的重合度)和ROUGE-2(bigram 的重合度)来衡量。

s表示summary总结,x表示review评论。

实验

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值