收藏 | 3种常见的数据分析场景梳理(附案例)

本文探讨了数据分析在描述现状、分析原因和预测未来三个关键场景中的应用。通过描述性分析来理解业务状态,诊断性分析以找出业务波动的根本原因,以及预测性分析来预估业务发展趋势。案例涉及商品流量转化、门店销量下滑和电商活动GMV预测,强调数据分析在提高工作效率、解决业务问题和制定策略方面的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方卡片关注我,回复“8”,加入数据分析·领地,一起学习数据分析,持续更新数据分析学习路径相关资料~(精彩数据观点、学习资料、数据课程分享、读书会、分享会等你一起来乘风破浪~b9f8e0ff0f73df7863c902e47b79048e.png)回复“小飞象”,领取数据分析知识大礼包。

关注微信公众号:木木自由,更多产品、运营与数据分析干货以及经验分享

文末领取数据分析的3种场景案例说明、数据分析指南、指标搭建案例、数据思维、商业分析工具:100种营销分析工具PPT版等资料

342e62d722d1b3df261462b0862b9311.gif

前言

db241ee93788d01beb36afa2fced55b4.gif     

数据分析已经逐步的被应用到工作/生活的各个领域,加上数字化、数智化的加速推进、ChatGPT的出现、AIGC(生成式人工智能)的发展,数据库的进一步健全,数据质量将越来越精准,具备数据分析技能将被更加广泛的应用,在未来,大到企业、小到个人,都将从数据分析中获益。

其实,数据分析的本质就是从繁杂的数据中看到其深层次的规律和机理,从而对未发生的事情进行预测!

那么,了解一下常见的3种数据分析场景,即描述现状、分析原因、预测未来,来加深对数据分析的理解。

✔描述现状通过描述性分有逻辑、成体系地拆解业务,用合理的指标整体评估业务的状态。

分析原因:通过诊断性分析,针对业务的异常波动,分析背后的原因,并提出解决策略。

预测未来:通过预测性分析基于现有的数据,结合实际情况,预测业务未来的发展。

数据分析场景

基本方法

数据分析方法

描述现状

描述性分析

对比分析

平均分析

综合评价分析

·····

分析原因

诊断性分析

分组分析

结构分析

交叉分析

杜邦分析

漏斗图分析

矩阵关联分析

聚类分析

······

预测未来

预测性分析

回归分析

时间序列

决策树

神经网络

······

(数据分析常见场景与对应的分析方法)

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值