《AI+数据治理指南》:AI 在主数据治理中应用、基于DeepSeek数据治理方案、大模型赋能数据治理、数据治理全过程域工具包

微信公众号:木木自由,更多数据分析,经营分析、财务分析、商业分析、数据治理、数据要素、数据资产干货以及资料分享

在AI时代,数据质量决定了AI输出的质量。而公共数据(如互联网上的开放数据)的质量难以控制,因此,拥有高质量、结构化、专业数据的企业将在AI竞争中占据优势。  

企业可以部署自己的AI智能系统,投喂经过严格治理的高质量数据,打造专属的AI应用。例如:

•  金融行业:利用高质量的交易数据训练风控AI,提升欺诈检测能力。   

•  制造行业:通过设备运行数据优化生产流程,减少故障率。    

•  医疗行业:基于临床数据训练诊断AI,提高医疗精准度。    

然而,现实情况是,大多数企业的数据治理水平仍然较差。全国政协委员、工业和信息化部原副部长王江平指出:我国数据禀赋优异、潜力巨大,数据储量增速世界领先,但数据产存转化率仅为2.9%,未使用数据占比高达38.9%。折射出中国企业普遍存在的数据困局,海量数据被源头即弃,“数据富矿”沉睡于服务器中。 (数据来源于:全国政协委员、工业和信息化部原副部长王江平于2月23日在数字金融合作论坛与清华大学五道口金融学院、深圳香蜜湖国际金融科技研究院联合举办的“2024年我国数字经济金融形势分析”闭门研讨会上的演讲) 

这意味着,企业如果不做好数据治理,就无法真正发挥AI的价值。 

AI的快速发展并不意味着数据治理变得无关紧要,相反,数据治理是企业在AI时代立足的核心能力。正如王江平委员所言,沉睡的数据富矿,需要用治理之镐唤醒。企业越早完成数据治理,越能在AI浪潮中抢占先机。未来,高质量数据将成为企业最宝贵的资产。

···

在此,【数据分析·领地】也整理了《AI+数据治理指南》,极具价值的实用指南。它深入剖析了人工智能与数据治理融合的关键要点,详细阐述 AI 如何为数据治理在提升质量、优化流程、增强安全等方面赋能,同时阐释数据治理怎样为 AI 发展提供高质量数据、保障合规及促进资产化。如何有效运用 AI 与数据治理,挖掘数据价值、推动业务创新,提供了清晰思路与可行方法 。供大家更好的学习了解,仅供学习交流

《AI+数据治理指南》

AI 在主数据治理中的应用.pdf

基于DeepSeek的数据治理方案(完整版64页).pdf

基于DeepSeek的数据治理方案(64页 PPT).pptx

大模型赋能数据治理(24页 PPT).pptx

数据流动治理整体解决方案(45页PPT).pptx

AI时代的数据治理(11页 PPT).ppt

AI 在主数据治理中的应用.pptx

数据治理发展情况调研分析 33页.pdf

数据治理全过程域工具包研究(27页).pdf

···

进【数据分析·领地星球】领取

文来源:网络整理以及个人实践总结

一、数据的困境

从数据的全生命周期来看,各个环节都存在棘手问题,导致大量数据处于 “沉睡” 状态,难以发挥价值。

1

编目环节 - 乱如麻

数据编目作为数据治理的根基,却呈现出 “乱如麻” 的局面,标准化严重缺失。目前,许多政务数据目录未遵循国家标准编码归类,就像图书馆的书籍随意摆放,查找困难、管理低效。这种无序状况使得数据难以被快速定位和有效利用,极大地降低了数据的使用效率。

2

归集环节 - 漏洞百出

数据归集过程中,质量参差不齐,错项、漏项、格式混乱等问题频发,可谓 “漏洞百出”。就像 “垃圾进,垃圾出” 一样,低质量的归集数据严重影响后续的分析和应用。例如在一些统计工作中,因数据归集错误导致分析结果偏差,进而影响政策制定的准确性。

3

交换环节 - 鸡同鸭讲

数据交换环节,标准各自为政,供需双方数据格式、接口标准不统一,如同 “鸡同鸭讲”,难以实现高效协同。这不仅导致数据交换效率低下,还常引发纠纷,阻碍了政务部门间的数据共享与合作。

4

开放环节 - 安全问题

数据安全是老生常谈却至关重要的问题。在公共开放平台的数据抽查中,常发现电话号码、身份证号码等敏感信息泄露情况,这不仅侵犯公民隐私,还损害政府公信力,对数据的开放应用造成极大隐患。

此外,传统的数据治理依赖 “人海战术”,依靠人工进行清洗、标注、监控,投入大、周期长、错误率高,导致高成本低收益,大量数据价值被埋没。

二、AI 为数据治理赋能

·提升数据质量

数据质量是数据治理的基石。传统的数据质量评估和修复工作往往依赖人工,不仅效率低下,而且难以全面检测和纠正数据中的错误、缺失和不一致性问题。AI 技术的引入改变了这一局面。例如,机器学习算法可以通过对大量历史数据的学习,自动识别数据中的异常值和错误模式,并进行智能修复。自然语言处理技术能够对非结构化数据进行清洗和规范化处理,将其转化为可用于分析的结构化数据,大大提高了数据的可用性。以某电商企业为例,借助 AI 驱动的数据质量工具,该企业能够实时监测交易数据,及时发现并纠正价格错误、库存数量异常等问题,数据准确率从之前的 85% 提升至 95% 以上,有效减少了因数据质量问题导致的业务损失。

·优化数据管理流程

数据管理涵盖数据的采集、存储、传输、共享等多个环节,过程复杂且繁琐。AI 可以实现数据管理流程的自动化和智能化。在数据采集阶段,利用 AI 技术能够自动识别和筛选有价值的数据来源,提高数据采集的精准度和效率。在数据存储和传输方面,AI 可以根据数据的使用频率和重要性,智能调整存储策略和传输路径,降低存储成本,保障数据传输的安全性和稳定性。此外,通过智能数据目录和搜索工具,AI 能够帮助用户快速准确地找到所需数据,提升数据的共享和利用效率。例如,某金融机构采用基于 AI 的智能数据管理平台后,数据查询时间从原来的平均 15 分钟缩短至 3 分钟以内,数据处理效率大幅提升,业务决策速度也明显加快。

·增强数据安全防护

在数据安全风险日益严峻的今天,数据治理的重要任务之一便是保障数据的安全。AI 在数据安全防护方面发挥着重要作用。通过机器学习算法,能够实时监测数据访问行为,识别潜在的异常访问和攻击行为,及时发出预警并采取相应的防护措施。例如,基于深度学习的异常检测模型可以学习用户的正常行为模式,一旦发现与正常模式不符的访问行为,如深夜时段大量下载敏感数据等,立即触发安全警报。此外,AI 还可以用于数据加密和解密,提高加密算法的安全性和效率,保护数据在存储和传输过程中的机密性。

面对这些复杂难题,AI + 准度领航产品凭借 “技术 + 规则” 双轮驱动模式,以其卓越的六大能力,为数据治理带来全新解决方案。

1

体系规则智能匹配能力

基于 AI + 数据质量评估模型,产品能够智能匹配检测体系与适用规则,让数据治理 “有章可循”,实现标准化。通过精准适配规则,避免了传统治理中规则应用的随意性和不确定性,为数据质量评估奠定科学基础。

2

精准检测数据问题能力

运用智能化配置调度,产品可精准发现数据问题,对数据进行全面 “体检”,做到 “对症下药”。无论是数据中的细微错误还是潜在风险,都能被快速识别,为后续的数据修复和优化提供明确方向。

3

安全隐患监控报警能力

借助 AI + 数据质量监控模型,产品具备多渠道安全隐患及时告警功能,让风险 “无所遁形”。在数据的存储、传输和使用过程中,实时监控安全状况,一旦发现安全隐患,立即发出警报,保障数据安全。

4

数据交换一致性检测能力

产品内置丰富的数据检测规则,可精确校验数据交换的一致性。在数据交换时,严格按照标准检测,确保不同系统、不同部门间的数据格式和内容统一,有效解决 “鸡同鸭讲” 的交换难题,提升数据协同效率。

5

数据目录质量保障能力

严格按照国家标准,产品对政务数据目录的规范性与准确性进行检测,让数据资源 “一目了然”。通过规范数据编目,使数据查找和管理更加便捷高效,盘活数据资产,提高数据利用率。

6

AI + 智能报告分析能力

无需人工干预,产品可智能产出定制化的质量评估报告、安全合规报告以及问题数据整改清单。以智能分析替代人工繁琐统计,快速准确地为数据治理提供决策依据,提升治理效率。

三、基于DeepSeek的数据治理方案(完整版64页)


···

四、数据流动治理整体解决方案

五、数据治理全过程域工具包研究

···

篇幅有限只展示部分。(分享PPT在星球搜索“基于DeepSeek的数据治理方案(完整版64页)”

文│来源:整合网络资源和个人实践经验,【数据分析·领地】星球领取完整版PPT~

附件1:《AI大环境下的企业级数据治理指南》

AI大环境下的数据治理设计思路[48页 PPT].pptx

企业数据治理建设实施方案(30页PPT).pptx

2024年构建企业级好数据-Dataphin智能数据建设与治理产品白皮书.pdf

【案例】企业级数据治理平台助力国家电网全业务数据中心建设(58页 PPT).pptx

【#数据治理#】企业级数据治理体系建设指南 滴普科技 29页.pdf

【数据治理】让政务充满AI数据治理与数据安全.pdf

数据治理体系建设方案(51页).pdf

企业数据智能管理治理平台设计建设技术方案.docx

···

图片

《DeepSeek应用指南

DeepSeek行业应用实践报告.pptx

DeepSeek:全球AI影响(应用).pptx

DeepSeek行业应用实践报告.pdf

山东大学:DeepSeek 应用与部署.pptx

DeepSeek基础知识(PPT电子版).pptx

浙江大学-DeepSeek模型优势:算力、成本角度解读2025.pptx

北大:DeepSeek-R1及类强推理模型开发解读.pptx

2025年DeepSeek手册:DeepSeek给我们带来的创业机会.pdf

2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告

图片

《DeepSeek相关指南》

DeepSeek指导手册从入门到精通.pdf

DeepSeek的崛起之路:AI大模型创业格局报告.pptx

2024年数据治理研究报告.pdf

数据治理与数据架构总体设计咨询方案【43页PPT】.pptx

数字化架构演进和治理(122页).pptx

数据治理方法论和案例(33页).ppt

数据治理体系及应用实践(51页).pptx

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

附2:《数据治理应用/规划指南

企业数据架构数据治理顶层规划方案(81页PPT).pptx

【案例】国家能源集团数据治理探索与应用(41页 PPT).pptx

数据治理之数据模型管控方案.pdf

基于集团数据资产管控的数据治理建设方案(精华版).pptx

ZH00102 XXX数据治理咨询方案和报价.doc

深入浅出数据治理培训教材(50页).pdf

数据治理体系建设文档.docx

数据治理建设管理方案(参考).docx

数据治理咨询项目投标文件[136页Word].doc

····

《德勤数据治理2.0

第一期:迈向高可信数据资产 

第二期:迈向高可信数据资产 高可信数据资产管理方法体系.pdf

第三期:迈向高可信数据资产 数据资产安全保护.pdf

第四期:迈向高可信数据资产 数据安全分级指引.pdf

第五期:迈向高可信数据资产 数据治理审计.pdf

第六期:迈向高可信数据资产 数据治理的监管趋势及其应对

第七期:迈向高可信数据资产 构建企业高可信、高质量的指标体系

第八期:企业如何构建高可信、高质量的标签体系,赋能业务精细化管理

第九期:迈向高可信数据资产 构建企业数据资产运营体系.pdf

第十期:金融数据模型对数据资产管理的作用.pdfd

图片

企业数据架构数据治理顶层规划方案(81页PPT)

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

【数据分析·领地】星球一起学习财务分析、经营分析、商业分析、数据治理、数据资产~等数据分析相关资料~

进星球获取更多~搜素关键词“数据治理”完整资料~

图片

图片

图片

图片

  1. 图片
    点击“阅读原文”直接获取数据治理相关材料

  1. 图片

    免责声明:本号所载内容为原创或整理于互联网公开资料,版权归原作者所有。文章仅供读者学习交流,不作任何商业用途。因部分内容无法确认真正来源,如有标错来源或涉及作品版权问题烦请告知,将及时处理,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值