类EMD的“信号分解方法”及MATLAB实现(第一篇)——EEMD

专栏之前的文章里对EMD进行了一系列的介绍。在实际中也见到不少同学将该方法应用于各个领域,除了博主研究的故障诊断方向,还有用作去噪、图像处理以及金融分析的。同时也不断有同学想了解诸如EEMD、VMD等类似于EMD分解方法的信号分解方法。所以从今天开始,准备梳理一下各种“类EMD”方法,帮助准备研究这个方向的同学们理一理头绪。

关于为何要进行信号分离研究,有一篇讲的很好的文章[1],不过我这里再赘述几句吧:

对于我们采集到的信号/数据,其中可能会蕴含着非常复杂的物理过程或经济过程,以及各种类型的干扰信息,而对于这些信息我们可能没有相关认知或者只有定性的了解。为了更清晰地分析对象的组成,我们要“把一个信号从一个整体,从它原始的采样表示变成在一组有意义的基上,或者是有特定意义的 '描述'上进行展开,而这种展开能够提供更加丰富的信号里面的信息和结构。这就是所谓信号的分离。”

也就是说,我们总是希望把一个信号写成一系列的子信号的组合,然后加上一个性质不同的信号,所谓的残差信号或者剩余信号。【1】

今天从EMD的最常见的一个衍生方法讲起:EEMD。

1. EEMD(集合经验模态分解)的概念

EEMD(Ensemble Empirical Mode Decomposition)是最常见的一种EMD改进方法。他的优势主要是解决EMD方法中的模态混叠现象。

说到模态混叠,顾名思义就是不同模态的信号混叠在一起,一般有两种情况:一是不同特征尺度的信号在一个IMF分量中出现,另一种是同一个特征尺度的信号被分散到不同的IMF分量中。

EEMD是怎样解决这个问题的呢:

EEMD主要的改进思路是:利用白噪声均值为0的特性,通过在分解的过程中多次引入均匀分布的白噪声,将信号本身的噪声通过多次人为添加的噪声掩盖过去,从而得到更加精准的上下包络线。同时对分解结果进行平均处理,平均处理次数越多,噪声给分解带来的影响就越小。[2,3]

下图展示的很明白了,EEMD分解主要分为4步:

(1)设定原始信号的处理次数m

(2)给这m个原始信号分别添加不同幅值的随机白噪声,组成一系列新的信号

(3)对这一系列的新信号分别进行EMD分解,得到一系列的IMF分量

(4)对相应模态的IMF分量分别求均值,得到EEMD分解结果

相较于EMD的(几乎)无参数傻瓜式自适应分解,EEMD就有一些参数需要调试了:分别是用于平均处理的次数M、添加的白噪声的幅值。其中白噪声的幅值通常用“白噪声幅值的标准差与原始信号幅值标准差之比”来表征。

2. EEMD的编程实现

截至目前的MATLAB版本(2020b),MATLAB还没有把eemd的函数纳入到官方库中,所以我们需要使用中央大学数据研究中心提供EMD代码工具箱(后文有获取方法)。

下面我们来测试一下EEMD相对于EMD的优越性,首先生成一段由正弦信号与间断性高频脉冲合成的信号如下:

%% 1.生成仿真信号
fs = 400;  %采样频率
t = 0:1/fs:0.75; %时间轴
x = sin(2*pi*4*t); %低频正弦信号
y = 0.5*sin(2*pi*120*t); %高频正弦信号
for i = 1:length(t) %将高频信号处理成间断性
    if mod(t(i),0.25)>0.11&&mod(t(i),0.25)<0.12
    else
        y(i) = 0;
    end
end
sig = x+y; %信号叠加
figure('color','white')
plot(t,sig,'k') %绘制原始信号

混合信号

分别对该信号进行EMD分解和EEMD分解,得到的结果如下:

EMD分解结果,IMF1中有严重的模态混叠

EEMD分解结果

EEMD分解的IMF1、IMF2和IMF3是含有高频的正弦间歇性信号,IMF2和IMF3可以看做IMF1很小的能量损失,分析高频信号时,可以将IMF1、2、3叠加起来作为重构的高频信号,会得到更好的分析效果。IMF4也很好地提取了信号中的低频分量。

相比之下,EMD的分解结果存在着严重的模态混叠,失去使用的意义了。

上图中进行EEMD分解的程序如下:

Nstd = 0.2; %Nstd为附加噪声标准差与Y标准差之比
NE = 100;   %NE为对信号的平均次数
imf = pEEMD(sig,t,Nstd,NE);
% function imf = pEEMD(data,FsOrT,Nstd,NE)
% 画信号EEMD分解图
% 输入:
% y为待分解信号
% FsOrT为采样频率或采样时间向量,如果为采样频率,该变量输入单个值;如果为时间向量,该变量为与y相同长度的一维向量。如果未知采样频率,可设置为1
% Nstd为附加噪声标准差与Y标准差之比
% NE为对信号的平均次数
% 输出:
% imf为经eemd分解后的各imf分量值
% 例1:(FsOrT为采样频率)
% fs = 100;
% t = 1/fs:1/fs:1;
% data = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pEEMD(data,fs,0.2,100);
% 例2:(FsOrT为时间向量,需要注意此时FsOrT的长度要与y相同)
% t = 0:0.01:1;
% data = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pEEMD(data,t,0.2,100);

上述程序中的pEEMD是笔者经过再次封装的eemd程序,在中央大学提供的eemd函数中,返回的imf中带着原始信号,且行列方向与其他工具箱的分解函数也不一致,为了与其他信号分解方法的结果保持统一,在封装程序里对其进行了处理。此时imf即为eemd分解后的各分量信号。同时EEMD分解的图也可以画出来。

对于有些应用场景,还需要对各imf分量的频谱进行分析,就需要如下这样的图:

EEMD分解及其频谱图

画这个图也同样封装成了一行代码就可以实现的形式:

%% 3.EEMD分解及频谱图
imf = pEEMDandFFT(sig,fs,Nstd,NE);% 画信号EEMD分解与各IMF分量频谱对照图
% function imf = pEEMDandFFT(y,FsOrT,Nstd,NE)
% 输入:
% y为待分解信号
% FsOrT为采样频率或采样时间向量,如果为采样频率,该变量输入单个值;如果为时间向量,该变量为与y相同长度的一维向量
% Nstd为附加噪声标准差与Y标准差之比
% NE为对信号的平均次数
% 输出:
% imf为经eemd分解后的各imf分量值
% 例1:(FsOrT为采样频率)
% fs = 100;
% t = 1/fs:1/fs:1;
% y = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pEEMDandFFT(y,fs,0.2,100);
% 例2:(FsOrT为时间向量,需要注意此时FsOrT的长度要与y相同)
% t = 0:0.01:1;
% y = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pEEMDandFFT(y,t,0.2,100);

上边的测试代码,包括工具箱都可以在下面链接中获取:

EEMD画图工具(公开版) | 工具箱文档

EMD以及HHT相关的程序也有,编程不易,感谢支持~关于EMD和HHT的相关介绍可以看这里:

Mr.括号:这篇文章能让你明白经验模态分解(EMD)——EMD在MATLAB中的实现方法

Mr.括号:希尔伯特谱、边际谱、包络谱、瞬时频率/幅值/相位——Hilbert分析衍生方法及MATLAB实现

3. 更多

后续还会逐渐补充CEEMD、MEEMD、VMD、LMD以及小波分解、小波包分解、SWT、EWT等等“信号分解方法”,把这一系列做的尽量全面一些。有其他想让博主补充的也可以在评论区留言,合适的话会一起加入该系列豪华大餐哦~

【1】 aresmiki:信号分离研究内容--2

【2】李晨亮. 基于EEMD_LSTM模型的沪深300指数预测研究[D].

【3】王少君. 基于EEMD的滚动轴承微弱故障特征提取方法研究[D].

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.看海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值