【多尺度熵与特征提取】一文看懂“多尺度熵”——多尺度样本熵、多尺度模糊熵、多尺度排列熵、多尺度包络熵、多尺度功率谱熵、多尺度能量熵、多尺度奇异谱熵及其MATLAB实现

在之前的系列的文件里,我对信息熵(功率谱熵、奇异谱熵、能量熵、近似熵、样本熵、排列熵、模糊熵)进行了较为系统的讲解(文章链接见文末)。

不过时常会有同学问我:为什么求熵值画不出来图?

对于一组一维数据来说,求它的某种信息熵(比如模糊熵)得到的就是单一的数值,它描述的是这段信号的复杂度,单一的数据点自然没办法画图。

不过对于朴素的“想要有张图贴到论文中”的想法,今天要讲的“多尺度熵”就可以满足了。

一、为什么要“多尺度”

简单地说,就是为了解决之前求信息熵尺度单一的问题,也就是分析对象只针对原始信号本身,这意味着,这些方法可能忽视了信号中的重要信息,尤其是在分析具有多重时间尺度特征的复杂信号时。

许多类型的信号,例如生理信号(如心电图)和金融市场数据,显示出在不同时间尺度上具有不同复杂性的特征。例如,心电图信号在短时间尺度上可能表现出快速的波动,而在长时间尺度上显示出更缓慢的趋势。

所以Costa 等提出了另一种时间序列复杂度的衡量方法—— 多尺度熵( multiscale entropy,简称MSE),用以衡量时间序列在不同尺度上的复杂性, 极大地丰富了熵的含义。

二、“多尺度”是如何实现的

其实多尺度的实现是非常简单粗暴的。

首先这里引入了一个叫做“尺度因子”的概念。

当尺度因子等于1时,处理后的序列就等于原序列。
当尺度因子等于2时,则将序列中相邻的2个数求平均,例如原始序列为  X={2,4,6,8,10,12} ,则处理后的序列为:每两个数的平均值,即: {(2+4)/2,(6+8)/2,(10+12)/2}={3,7,11}。此时你可以看出,此时序列长度变为以前的1/2
当尺度因子等于3时,则将序列中相邻的3个数求平均,此时序列长度变为以前的1/3,依此类推。

这个处理过程叫做“粗粒化”,可以说这个命名还是很形象的,随着尺度因子的增加,更多的细节信号在平均之后小时,序列所包含的信息变得更加平滑,动态特征减少,相应的长期趋势特征变得更为突出。

经过一系列的多尺度计算,比如尺度因此从1取到5,就可以得到5个新的数列,此时我们就可以观察信号在不同时间尺度下的行为。

拿一张图来直观展示一下这种“粗粒化”过程:

### YOLOv5 中多尺度检测层的实现用法 YOLOv5 的多尺度检测机制是一种提升模型鲁棒性和精度的重要技术。它通过引入多个特征图来捕捉不同大小的目标,从而显著提高了对小目标和复杂场景的检测效果。 #### 1. 多尺度检测的核心概念 多尺度检测的思想来源于早期的 YOLO 版本以及后续改进版本(如 YOLOv3)。在 YOLOv3 中,网络被分为三个不同的检测头,分别对应高分辨率、中等分辨率和低分辨率的特征图[^3]。这种设计使得模型能够更有效地处理从小到大的各类目标。而 YOLOv5 则进一步优化了这一架构,采用了一种更加灵活的方式来进行多尺度融合。 #### 2. YOLOv5 的多尺度检测实现 YOLOv5 使用 **FPN (Feature Pyramid Network)** 和 **PANet (Path Aggregation Network)** 来构建其多尺度检测框架。具体来说: - FPN 负责自顶向下的特征提取,将深层的语义信息传递给浅层特征。 - PANet 增加了一个自底向上的路径聚合模块,用于增强浅层特征的空间细节信息。 这些操作共同作用于输入图像的不同层次特征上,最终形成一个多尺度的特征金字塔结构。以下是其实现的关键点: ##### (1)骨干网络输出 YOLOv5 骨干网络会生成三组主要的特征图,通常表示为 `C3`、`C4` 和 `C5`,它们分别对应不同尺寸的特征映射: - `C3`: 较高的空间分辨率,适合检测小型物体。 - `C4`: 中间分辨率,适用于中型物体。 - `C5`: 较低的空间分辨率,擅长捕获大型物体。 ##### (2)颈部结构 YOLOv5 的颈部结构负责连接骨干网和头部预测器。该部分实现了跨尺度的信息交互,主要包括以下几个组件: - **Upsample**: 将高层特征图放大至较低层的尺寸,以便进行拼接。 - **Concatenate**: 把放缩后的高层次特征对应的低层次特征沿通道维度拼接起来。 - **Convolutional Layers**: 对拼接后的特征施加卷积运算以减少冗余并加强表达能力。 例如,在代码层面可以通过如下方式定义 Upsample 层: ```python import torch.nn as nn class UpSample(nn.Module): def __init__(self, scale_factor=2, mode='nearest'): super(UpSample, self).__init__() self.scale_factor = scale_factor self.mode = mode def forward(self, x): return nn.functional.interpolate(x, scale_factor=self.scale_factor, mode=self.mode) ``` ##### (3)头部预测 经过上述过程得到的新特征集合会被送入检测头完成最终的任务——即边界框回归和类别分类。对于每一个尺度而言,都会独立执行这样的计算流程。 #### 3. 应用实例分析 为了验证多尺度策略的有效性,《多尺度YOLOv5的交通灯检测算法一文中对比测试了标准版 YOLOv5 和加入额外调整后的 MS-YOLOv5 在逆光环境下的表现情况。实验结果显示后者具有更强适应能力和更高的准确性 Fig. 6 Detection results of YOLOv5 and MS-YOLOv5 in backlit scenes [^1]. 此外,《YOLOv5目标检测算法的原理、网络结构及其在实际应用中的优化方法》也提到过适当调节锚盒参数可以帮助改善特定领域内的识别质量 [^2]. --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.看海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值