Batch与Patch 代表什么

本文介绍了深度学习中两个关键概念——Batch和Patch。Batch是指训练时每次输入的数据量,而Patch则是指在图像处理中将大图切分成的小块。在神经网络的卷积运算中,图像通常被划分为多个Patch,每个Patch与卷积核进行独立运算。理解这两个概念对于优化模型训练和提升计算效率至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Batch批量的大小,就是你训练的时候每次输入多少张图片。
  • Patch图像块的大小,比如说原图1024*1024,随机从图中裁剪出256*256大小的块,就是patch。更准确来说:“patch”, 指一个二维图片中的其中一个小块, 即一张二维图像中有很多个patch. 正如在神经网络的卷积计算中, 图像并不是一整块图像直接同卷积核进行运算, 而是被分成了很多很多个patch分别同卷积核进行卷积运算, 这些patch的大小取决于卷积核的size. 卷积核每次只查看一个patch, 然后移动到另一个patch, 直到图像分成的所有patch都参与完运算.

    例如, 下图中, 左边各个移动的蓝色框就是一个个的patch。

  • 【1】Batch和Patch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值