多维数组多阶、多步差分及还原计算

该博客介绍了如何在Python中处理多维数据的多阶、多步差分计算及其还原。内容涵盖了差分的基本概念,包括多阶差分(连续一阶差分)和多步差分(间隔k个数据点的差分),并强调了两者之间的区别。文章提供了一种处理datetime数据和普通数据的方法,并通过示例展示了6阶24步及10阶4步的差分和还原操作。此外,还提供了完整的代码示例,可用于自定义不同维度、阶数和步数的差分还原计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据差分是在数据分析时经常遇到的,本文就多维、多阶、多步差分进行了介绍,并能完成差分计算和差分还原计算。

本计算能自如处理多维数据(Dimension),能处理datetime数据和更多的普通数据。

差分就是

多阶差分是多次进行一阶差分

多步差分就是一阶差分中隔k隔数据进行差分计算

在差分计算中一定要注意多阶或者多步差分的区别。

参考文章 

多阶差分、多步差分的区别及差分计算_firefox_yau的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

firefox_yau

核心程序的复用性,彩票分析

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值