多层直接法的过程:
1、读图,随机取点并计算深度
2、创建图像金字塔(相机内参也需要缩放),并计算对应点的像素坐标
3、应用单层直接法(使用G-N、L-M等方法,或者使用g2o、ceres库)进行优化
源码中有一些地方会引起段错误,修改方法见下面代码中注释
总的来说,直接法与特征点法的实现过程大同小异。不同的地方在于:特征点法中需要提取角点,直接法则可以随机取点(也可以取角点)并且取点数不能太少;直接法与特征点法计算误差不同(因此雅可比矩阵也不同)
#include <opencv2/opencv.hpp>
#include <sophus/se3.hpp>
#include <boost/format.hpp>
#include <pangolin/pangolin.h>
using namespace std;
using namespace cv;
typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
typedef Eigen::Matrix<double, 6, 6> Matrix6d;
typedef Eigen::Matrix<double, 2, 6> Matrix26d;
typedef Eigen::Matrix<double, 6, 1> Vector6d;
//相机内参
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
//基线
double baseline = 0.573;
//图片路径
string left_file = "../left.png";
string disparity_file = "../disparity.png";
boost::format fmt_others("../%06d.png");
//用于计算增量方程各参数的类
class JacobianAccumulator {
public:
JacobianAccumulator(
const cv::Mat &img1_,
const cv::Mat &img2_,
const VecVector2d &px_ref_,
const vector<double> depth_ref_,
Sophus::SE3d &T21_) :
img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
}
//计算各参数
void accumulate_jacobian(const cv::Range &range);
Matrix6d hessian() const { return H; }
Vector6d bias() const { return b; }
double cost_func() const { return cost; }
VecVector2d projected_points() const { return projection; }
//初始化各参数
void reset()
{
H = Matrix6d::Zero();
b = Vector6d::Zero();
cost = 0;
}
private:
const cv::Mat &img1;
const cv::Mat &img2;
const VecVector2d &px_ref;
const vector<double> depth_ref;
Sophus::SE3d &T21;
VecVector2d projection;
std::mutex hessian_mutex;
Matrix6d H = Matrix6d::Zero();
Vector6d b = Vector6d::Zero();
double cost = 0;
};
//双线性插值
inline float GetPixelValue(const cv::Mat &img, float x, float y)
{
//边界检测,随机点不会取在边上,因此这里右边界和下边界是可以的
if (x < 0) x = 0;
if (y < 0) y = 0;
if (x >= img.cols - 1) x = img.cols - 1;
if (y >= img.rows - 1) y = img.rows - 1;
uchar *data = &img.data[int(y) * img.step + int(x)];
float xx = x - floor(x);
float yy = y - floor(y);
return float(
(1 - xx) * (1 - yy) * data[0] +
xx * (1 - yy) * data[1] +
(1 - xx) * yy * data[img.step] +
xx * yy * data[img.step + 1]
);
}
//计算增量方程的参数
void JacobianAccumulator::accumulate_jacobian(const cv::Range &range)
{
const int half_patch_size = 1;
int cnt_good = 0;
Matrix6d hessian = Matrix6d::Zero();
Vector6d bias = Vector6d::Zero();
double cost_tmp = 0;
for (size_t i = range.start; i < range.end; i++)
{
//估计运动后点的空间坐标
//1、将像素坐标转换为归一化坐标
//2、归一化坐标乘以深度,得到空间坐标
//3、空间坐标左乘运动
Eigen::Vector3d point_ref =
depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
Eigen::Vector3d point_cur = T21 * point_ref;
if (point_cur[2] < 0)
continue;
//计算运动后点的像素坐标
//根据下面for循环以及GetPixelValue,这里需要修改if的条件,否则会出现段错误
float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
if (u < half_patch_size ||
u >= img2.cols - 1 - half_patch_size - 1 ||
v <= half_patch_size ||
v >= img2.rows - 1 - half_patch_size - 1)
continue;
projection[i] = Eigen::Vector2d(u, v);
cnt_good++;
double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
//计算误差、目标函数、雅可比、H、b
//3x3窗口
for (int x = -half_patch_size; x <= half_patch_size; x++)
for (int y = -half_patch_size; y <= half_patch_size; y++)
{
double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
GetPixelValue(img2, u + x, v + y);
Matrix26d J_pixel_xi;
Eigen::Vector2d J_img_pixel;
J_pixel_xi(0, 0) = fx * Z_inv;
J_pixel_xi(0, 1) = 0;
J_pixel_xi(0, 2) = -fx * X * Z2_inv;
J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
J_pixel_xi(0, 5) = -fx * Y * Z_inv;
J_pixel_xi(1, 0) = 0;
J_pixel_xi(1, 1) = fy * Z_inv;
J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
J_pixel_xi(1, 5) = fy * X * Z_inv;
J_img_pixel = Eigen::Vector2d(
0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
);
Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();
hessian += J * J.transpose();
bias += -error * J;
cost_tmp += error * error;
}
}
//更新H、b、cost
if (cnt_good)
{
//因为使用并行计算,为了防止抢占变量,需要先获得锁
unique_lock<mutex> lck(hessian_mutex);
H += hessian;
b += bias;
//cost只是一个判断收敛的依据,可以进行缩放
cost += cost_tmp / cnt_good;
}
}
//单层直接法
void DirectPoseEstimationSingleLayer(
const cv::Mat &img1,
const cv::Mat &img2,
const VecVector2d &px_ref,
const vector<double> depth_ref,
Sophus::SE3d &T21)
{
const int iterations = 10;
double cost = 0, lastCost = 0;
auto t1 = chrono::steady_clock::now();
JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);
for (int iter = 0; iter < iterations; iter++)
{
//初始化H、b、cost
jaco_accu.reset();
//并行计算H、b等参数
cv::parallel_for_(cv::Range(0, px_ref.size()),
std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));
// jaco_accu.accumulate_jacobian(cv::Range(0, px_ref.size()));
Matrix6d H = jaco_accu.hessian();
Vector6d b = jaco_accu.bias();
cost = jaco_accu.cost_func();
//更新
Vector6d update = H.ldlt().solve(b);;
T21 = Sophus::SE3d::exp(update) * T21;
if (std::isnan(update[0]))
{
cout << "update is nan" << endl;
break;
}
if (iter > 0 && cost > lastCost)
{
cout << "cost increased: " << cost << ", " << lastCost << endl;
break;
}
if (update.norm() < 1e-3)
break;
lastCost = cost;
cout << "iteration: " << iter << ", cost: " << cost << endl;
}
cout << "T21 = \n" << T21.matrix() << endl;
auto t2 = chrono::steady_clock::now();
auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "direct method for single layer: " << time_used.count() << endl;
//画出跟踪结果
cv::Mat img2_show;
cv::cvtColor(img2, img2_show, COLOR_GRAY2BGR);
VecVector2d projection = jaco_accu.projected_points();
for (size_t i = 0; i < px_ref.size(); ++i)
{
auto p_ref = px_ref[i];
auto p_cur = projection[i];
if (p_cur[0] > 0 && p_cur[1] > 0)
{
cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
cv::Scalar(0, 250, 0));
}
}
cv::imshow("current", img2_show);
cv::waitKey();
}
//多层直接法
void DirectPoseEstimationMultiLayer(
const cv::Mat &img1,
const cv::Mat &img2,
const VecVector2d &px_ref,
const vector<double> depth_ref,
Sophus::SE3d &T21)
{
//金字塔参数
int pyramids = 4;
double pyramid_scale = 0.5;
double scales[] = {1.0, 0.5, 0.25, 0.125};
//建立金字塔
vector<cv::Mat> pyr1, pyr2;
for (int i = 0; i < pyramids; i++)
{
if (i == 0)
{
pyr1.push_back(img1);
pyr2.push_back(img2);
} else
{
cv::Mat img1_pyr, img2_pyr;
cv::resize(pyr1[i - 1], img1_pyr,
cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
cv::resize(pyr2[i - 1], img2_pyr,
cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
pyr1.push_back(img1_pyr);
pyr2.push_back(img2_pyr);
}
}
//备份相机内参
double fxG = fx, fyG = fy, cxG = cx, cyG = cy;
//多层直接法
for (int level = pyramids - 1; level >= 0; level--)
{
//计算提取点在当前图层的位置
VecVector2d px_ref_pyr;
for (auto &px: px_ref)
px_ref_pyr.push_back(scales[level] * px);
//缩放相机内参
fx = fxG * scales[level];
fy = fyG * scales[level];
cx = cxG * scales[level];
cy = cyG * scales[level];
DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
}
}
int main(int argc, char **argv)
{
//读取灰度图
cv::Mat left_img = cv::imread(left_file, 0);
cv::Mat disparity_img = cv::imread(disparity_file, 0);
cv::RNG rng;
int nPoints = 2000;
int boarder = 20;
VecVector2d pixels_ref;
vector<double> depth_ref;
//随机取点(为了增加可用点,不取边界点)
for (int i = 0; i < nPoints; i++)
{
int x = rng.uniform(boarder, left_img.cols - boarder);
int y = rng.uniform(boarder, left_img.rows - boarder);
int disparity = disparity_img.at<uchar>(y, x);
double depth = fx * baseline / disparity; //根据视差求深度
depth_ref.push_back(depth);
pixels_ref.push_back(Eigen::Vector2d(x, y));
}
//待估计运动
Sophus::SE3d T_cur_ref;
for (int i = 1; i < 6; i++)
{
//以读取灰度图
cv::Mat img = cv::imread((fmt_others % i).str(), 0);
DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
}
return 0;
}