几何角度理解线性代数(3):点积与叉积

视频链接: https://www.bilibili.com/video/BV1ys411472E?p=10&spm_id_from=pageDriver&vd_source=f8ee4d4e31e4049864a5ba319b83aea7

Take Home Message

对偶性:

  • 每当你看到多维空间到数轴的线性变换时,其都会与空间中的某一个向量对应,也就是说,应用线性变换,与直接与该向量点乘是一码事。
    而这个向量,就叫做该变换的对偶向量。
    在这里插入图片描述
  • 叉乘

在这里插入图片描述

点积

点积的标准观点

数值计算方式:
在这里插入图片描述

几何含义:
在这里插入图片描述

在这里插入图片描述

从线性变换的角度看点积

在这里插入图片描述

其他

在这里插入图片描述
在这里插入图片描述

叉积

叉积的标准观点

在这里插入图片描述
叉积的顺序不可交换
在这里插入图片描述

不严谨的二维叉积的计算方式:
在这里插入图片描述

严格的叉积定义是,两个三维向量产生新的三维向量:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

从线性变换的角度看叉积

从多维空间变换到一维空间的过程中,可以找到一个向量使得整个变换可以看作与这个特定向量的点积。也即对偶性质。

那么,我们定义这样的寻找计划:
在这里插入图片描述
回顾一下二维情况下不严谨的叉积计算:
在这里插入图片描述

很自然的,如果我们想要外推到三维情况下,就会这么想(先声明这是不对的):

在这里插入图片描述

但显然,这是不对的,因为这并不是三维的叉积,三维的叉积只会输入两个向量,而输出一个向量。然而,我们借助这种直观但错误的想法,不妨将 u ⃗ \vec{u} u 看作可变向量,进而收获一个函数(注意,这是理解叉积的关键):

在这里插入图片描述

我们知道,这个函数是线性的,也就是说,我们可以找到一个向量 p ⃗ \vec{p} p 使得 p ⃗ \vec{p} p 与其他任何一个向量的点积等于一个3×3矩阵的行列式:
在这里插入图片描述

我们现在考虑计算过程:

在这里插入图片描述
将上式进行整理,可以得到:
在这里插入图片描述
只是我们可以发现该过程跟直接加上 i ^ \hat{i} i^ j ^ \hat{j} j^ k ^ \hat{k} k^并无区别:
在这里插入图片描述
再考虑几何过程。
我们首先定义一个三维空间到数轴的线性变换,且该变换由 v ⃗ \vec{v} v w ⃗ \vec{w} w 来定义,此时,我们可以找到一个对偶向量,使得应用该变换与直接与对偶向量形成等价关系。
在几何角度上,我们可以认为这个对偶向量,一定与 v ⃗ \vec{v} v w ⃗ \vec{w} w 垂直,且长度与这两个向量张成的平行四边形的面积相同。
在这里插入图片描述
为什么呢?

因为,我们可以知道等式右边的行列式就代表着平行六边形的体积,而点积代表着投影长度与向量长度的乘积,那要等式成立,要找的对偶向量就应该是长度为平行四边形的面积,且方向垂直于平行四边形。

我们之前通过数值方式所找到的向量 p ⃗ \vec{p} p 与几何角度上找到的向量是完全一致的。
至此,我们就完成了对偶向量 p ⃗ \vec{p} p 的寻找。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FLOWVERSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值