线性代数的本质_04_点积与叉积

点积:

点积的计算非常简单,两个相同长度的数组点积等于对应位置元素乘积之和。在线性代数中,点积的计算是比较靠前的内容,而且我们知道两个向量点积除以两个向量的模的乘积等于向量夹角的余弦值,点积的先后顺序也并不影响结果,这是非常重要的。

在几何上,a.b和b.a却是不一样的,如下:

看似两个完全不同的过程,结果是一样的,从几何上看,也能看出一样,cos(a)一样。这个和之前的矩阵的值有区别(代表基向量围成的面积,体积等)。

但是,说到底我们还是没有介绍清楚,为什么点积是这样算的,为什么不是其他方式计算,例如等于这两个向量围成的面积。下面从其他的角度解释:

1:从数值计算上:

在之前我们学过降维的空间变换,还有非方阵,如果有一个变换,秩为1,那么他将把空间压缩到一条线上,纯粹从数值计算上来看,我们可以把点积理解成向量和变换到一维的计算:

如上图,【1,-2】可以看做压缩到1维的变换,后者看做向量。点乘结果就是压缩到一维后的大小。

2:从空间变换上看:

不可否认,1*2的矩阵和2*1的矩阵存在着某种关系,可以看成降维,也可以看成向量。

抛开之前讲的,只需要记住点乘的集合解释:u.v就是将w向量投影到v向量方向上的长度乘以v向量的长度,恰巧,这个投影就可以看成空间变换,与上面内容几乎相同。不管几维空间的两个向量点乘,都是这样,这个投影变换必将整个空间压缩到一维,至于为什么,投影过长可以看出将整个张成空间投影到直线,做种张成空间就在这条直线。

为了方便理解,我们假设u向量为任意单位向量,u.v向u方向投影,那么这个投影矩阵很显然是如下计算:

i 基向量变为 i 在u上的投影,由于 i 和 uw 都为单位向量,所以投影的值为(ux,uy),图解如下:

同样的, j 向量变到 j 在 u 上的投影,与上面解释一样,为(ux,uy),所以,这个变换矩阵为【ux,uy,ux,uy】。实际也就是空间压缩到直线,变换为【ux,uy】。

所以单位向量的点积可以理解为向量投影到这个单位向量的长度。原理一样,如果上面的u是任意向量,长度不为1,其几何过程是一样的。在空间变换上,我们可以认为这样的变换分为两步:1:x,y非等比缩放。2:降维压缩到一维。

所以在任何时候我们看到点积,就可以理解为对基的两个特殊的变换(缩放+降维),或则对第二个向量的一个特殊变换(降维)。过程如下:

这是数学中对偶性的一个实例,对偶像就是两种数学事物之间自然又出乎意料的对应关系。

叉积:

叉积计算也比较简单,之前就提到过基向量的叉积,二维下,两个基向量的叉积就代表其围成平行四边形的面积(正负代表定向问题)。二维向量的叉积数值绝对值就是这两个向量长度乘积在乘以sin(a),点积恰好是乘以cos(a)。

对于二维,叉积恰好是计算着两个向量组成的行列式,所以 u * v  = - v * u。3u * v = 3*(u * v)。值得一提的是,这都是根据面积(或者叉积/外积的定义)得到的。

值得一提的是,这个面积不是叉积的几何意义,即使从数学上看这个解释比较完美。真的叉积是两个三维向量生成新的三维向量,在这个过程中,上面平行四边形也有很重要的作用。面积的值等于生成向量的模。新向量与平行四边形垂直且指向平行四边形正方向的一边。

在数学计算上,叉积却是比较奇怪的,我们很难看出其几何意义:

此外,在线性代数课上,这里会常出现一种写法,老师智只会告诉我们这只是种符号上的技巧,这样写就是可以的:

但这样做也是有原因的。解释还需之前提到的对偶性。

以线性变换的眼光看叉积:

回想之前二维空间的叉积计算,没有涉及到向量等。三维下不同,我们知道三维中三个基向量组成的行列式的值在几何上代表其围成平行六面体的体积,然而,叉积两个向量输入,我们假设还有一个向量为变量,那么围成的体积也是变量,也可能为0,当共面的时候。

上面的情况比较特殊,可以理解为:有一个变换,这个变换由两个向量决定,这个变换输入任意向量,得到的是决定这个变换的两个向量和输入向量围成的体积,是一个数值(一维的),这个变换很显然也是三维到一维的变换,所以是一个1*3的行列式,这也是一个线性变换,如下:

上图两边式子都等于围成的体积。根据之前点乘的对偶性,不妨把这个变换竖起来,即左边变成两个向量的点乘了。对于竖起来的这个向量以及点乘的对偶性,我们研究的问题变成了下面这样:

当一个向量与任何向量点乘的结果等于这个任意向量与另外两个向量围成的平行六面体体积数值一样时,这个向量与另外两个向量有什么关系?

上图式子右边,根据几何性质,我们可以认为是 V,W 两个向量围成平面面积乘以【x,y,z】向量投影到垂直于这个平面法线上的长度(这就代表体积),对于左边点乘,我们可以认为是将【x,y,z】投影到三个问号代表的向量方向上的长度乘以这个向量的长度,两边都是【x,y,z】的投影,可以两边都忽略这部分,那么v,w围成的面积一定与【?,?,?】这个向量(这个变换)一一对应,

如上图,白色向量为【x,y,z】,红色为垂直于v,w 的向量(长度不定),灰色向量为白色向量在红色上的投影。

v,w 和白色向量围成的体积数值等于白色向量点乘某个向量。换句话说:

v,w围成的面积乘以灰色向量的模,等于白色相连点乘某个向量,这里的某个向量很明显就是和灰色向量同向,长度等于vw围成的面积的向量。从而也说明 v,w 与红色向量(长度等于面积值)一一对应。

结论:

两个向量叉乘得到的向量与另一个向量点乘数值上等于这两个向量和另一个向量组成行列式的值。

扩展:

对于点乘叉乘、内积和外积,知乎、谷歌还有很多理解方式,以及扩展有很多知识。例如行列式的降阶计算等。

参考资料:

3Blue1Brown点积与对偶性

3Blue1Brown叉积的标准介绍

3Blue1Brown以线性变换的眼光看叉积

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值