PyTorch - torch.nn.PReLU
flyfish
PReLU是Parametric ReLU
示例1
import torch
import torch.nn as nn
input = torch.arange(0, 12).view(1,3,2,2).float()
input = torch.randn(1,3,2,2)
print(input)
m = nn.PReLU(3)
output = m(input)
print(output)
计算过程
数学表达式:
P
R
e
L
U
(
x
)
=
m
a
x
(
0
,
x
)
+
a
∗
m
i
n
(
0
,
x
)
PReLU(x)=max(0,x)+a∗min(0,x)
PReLU(x)=max(0,x)+a∗min(0,x)
还可以这样写
f
(
y
i
)
=
{
y
i
,
if
y
i
>
0
a
i
y
i
,
if
y
i
≤
0
f\left(y_{i}\right)=\left\{\begin{array}{ll} y_{i}, & \text { if } y_{i}>0 \\ a_{i} y_{i}, & \text { if } y_{i} \leq 0 \end{array}\right.
f(yi)={yi,aiyi, if yi>0 if yi≤0
代码是
a=0.25
print(torch.max(input,torch.FloatTensor([0.0])) + a * torch.min(input,torch.FloatTensor([0.0])))
torch.nn.PReLU(num_parameters=1,init=0.25)
参数说明
其中a 是一个可学习的参数,当不带参数调用时,即nn.PReLU(),在所有的输入通道上使用同一个a,当带参数调用时,即nn.PReLU(nChannels),在每一个通道上学习一个单独的a。
注意:当为了获得好的performance学习一个a时,不要使用weight decay。
num_parameters:要学习a的数量,可以输入两种值,1或者输入的通道数,默认是1
init:a的初始值,默认0.25
ReLU,LeakyReLU,PReLU比较