PyTorch - torch.nn.PReLU

PyTorch - torch.nn.PReLU

flyfish

PReLU是Parametric ReLU
示例1

import torch
import torch.nn as nn
input = torch.arange(0, 12).view(1,3,2,2).float()
input = torch.randn(1,3,2,2)
print(input)
m = nn.PReLU(3)
output = m(input)
print(output)

计算过程
数学表达式:
P R e L U ( x ) = m a x ( 0 , x ) + a ∗ m i n ( 0 , x ) PReLU(x)=max(0,x)+a∗min(0,x) PReLU(x)=max(0,x)+amin(0,x)
还可以这样写
f ( y i ) = { y i ,  if  y i > 0 a i y i ,  if  y i ≤ 0 f\left(y_{i}\right)=\left\{\begin{array}{ll} y_{i}, & \text { if } y_{i}>0 \\ a_{i} y_{i}, & \text { if } y_{i} \leq 0 \end{array}\right. f(yi)={yi,aiyi, if yi>0 if yi0
代码是

a=0.25
print(torch.max(input,torch.FloatTensor([0.0]))  + a * torch.min(input,torch.FloatTensor([0.0])))

torch.nn.PReLU(num_parameters=1,init=0.25)

参数说明
其中a 是一个可学习的参数,当不带参数调用时,即nn.PReLU(),在所有的输入通道上使用同一个a,当带参数调用时,即nn.PReLU(nChannels),在每一个通道上学习一个单独的a。

注意:当为了获得好的performance学习一个a时,不要使用weight decay。

num_parameters:要学习a的数量,可以输入两种值,1或者输入的通道数,默认是1

init:a的初始值,默认0.25

ReLU,LeakyReLU,PReLU比较
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值