牛顿第二定律(加速度定律)

牛顿第二定律(加速度定律)

flyfish

2024-07-09
2024-07-10 修正文字

牛顿三大运动定律

  1. 牛顿第一定律(惯性定律)
    任何物体在没有外力作用下,将保持静止状态或匀速直线运动状态。
    即,如果合外力为零,物体将保持其当前的运动状态。
    数学表达: F = 0    ⟹    v = constant \mathbf{F} = 0 \implies \mathbf{v} = \text{constant} F=0v=constant

  2. 牛顿第二定律(加速度定律)
    物体的加速度与作用在物体上的净力成正比,并沿着力的方向。
    即,物体的加速度等于作用力除以物体的质量。
    数学表达: F = m a \mathbf{F} = m \mathbf{a} F=ma
    这里, F \mathbf{F} F 是作用在物体上的净力, m m m 是物体的质量, a \mathbf{a} a 是物体的加速度。

  3. 牛顿第三定律(作用与反作用定律)
    任何一个作用力都会有一个大小相等、方向相反的反作用力。
    即,如果物体A对物体B施加一个力,物体B也会对物体A施加一个大小相等但方向相反的力。
    数学表达: F A B = − F B A \mathbf{F}_{AB} = -\mathbf{F}_{BA} FAB=FBA

除了这三大运动定律还有

万有引力定律 :描述了两个物体之间的引力作用。
F = G m 1 m 2 r 2 F = G \frac{m_1 m_2}{r^2} F=Gr2m1m2
这里, F F F 是两个物体之间的引力, G G G 是引力常数, m 1 m_1 m1 m 2 m_2 m2 是两个物体的质量, r r r 是它们之间的距离。

本文主要说明的是牛顿第二定律(加速度定律)

首先区分下定律和定理

定律
定律是描述自然界中某些现象的基本规律的陈述,通常基于大量实验和观察得到的经验总结。定律一般是普遍适用的,并且经过反复验证。
例子:牛顿运动定律、热力学定律。

定理
定理是通过逻辑推理和数学证明得到的结论。定理通常基于一组假设或公理,经过严格的推导过程得出。
例子:毕达哥拉斯定理、费马小定理。

牛顿第二定律在不同的表达形式下,实质上描述的是同一个物理现象。公式 F = m d 2 x d t 2 F = m \frac{d^2 x}{dt^2} F=mdt2d2x 实际上是牛顿第二定律的一种常见形式,它与 F = m a F = ma F=ma 是等价的。让我们详细解释一下。

牛顿第二定律的不同形式

  1. 基本形式
    F = m a \mathbf{F} = m \mathbf{a} F=ma
    这里:
    F \mathbf{F} F 是物体所受的合力(向量)。
    m m m 是物体的质量。
    a \mathbf{a} a 是物体的加速度(向量)。

  2. 微积分形式 F = m d 2 x d t 2 \mathbf{F} = m \frac{d^2 \mathbf{x}}{dt^2} F=mdt2d2x

这里:
x ( t ) \mathbf{x}(t) x(t) 是物体的位置函数(向量)。
d 2 x d t 2 \frac{d^2 \mathbf{x}}{dt^2} dt2d2x 是位置函数对时间的二阶导数,即加速度(向量)。

上面的形式都是等价的

加速度定义
加速度是速度对时间的一阶导数,而速度是位置对时间的一阶导数。因此,加速度是位置对时间的二阶导数。
a = d v d t = d d t ( d x d t ) = d 2 x d t 2 \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left( \frac{d\mathbf{x}}{dt} \right) = \frac{d^2 \mathbf{x}}{dt^2} a=dtdv=dtd(dtdx)=dt2d2x

替换加速度
将加速度的定义代入基本形式 F = m a \mathbf{F} = m \mathbf{a} F=ma,得到: F = m ( d 2 x d t 2 ) \mathbf{F} = m \left( \frac{d^2 \mathbf{x}}{dt^2} \right) F=m(dt2d2x)

解释

位置函数 x ( t ) \mathbf{x}(t) x(t)
物体在时间 t t t 时的位置。位移是位置的变化,可以用向量表示,例如从点A到点B的直线距离和方向。
如果物体在 t 1 t_1 t1 时刻的位置是 x ( t 1 ) \mathbf{x}(t_1) x(t1),在 t 2 t_2 t2 时刻的位置是 x ( t 2 ) \mathbf{x}(t_2) x(t2),则位移是:
Δ x = x ( t 2 ) − x ( t 1 ) \Delta \mathbf{x} = \mathbf{x}(t_2) - \mathbf{x}(t_1) Δx=x(t2)x(t1)

速度函数 v ( t ) \mathbf{v}(t) v(t)
物体在时间 t t t 时的速度,定义为位置函数对时间的导数: v ( t ) = d x ( t ) d t \mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt} v(t)=dtdx(t)
速度是位移随时间的变化率。如果物体的位置函数是 x ( t ) \mathbf{x}(t) x(t),则速度是:
v ( t ) = d x ( t ) d t \mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt} v(t)=dtdx(t)
速度的大小(速率)是速度向量的模,方向与位移的方向一致。

加速度 a ( t ) \mathbf{a}(t) a(t)
物体在时间 t t t 时的加速度,定义为速度函数对时间的导数,或者位置函数对时间的二阶导数: a ( t ) = d v ( t ) d t = d 2 x ( t ) d t 2 \mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt} = \frac{d^2 \mathbf{x}(t)}{dt^2} a(t)=dtdv(t)=dt2d2x(t)
加速度是速度随时间的变化率。如果物体的速度函数是 v ( t ) \mathbf{v}(t) v(t),则加速度是:
a ( t ) = d v ( t ) d t \mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt} a(t)=dtdv(t)
加速度的大小是速度变化的速率,方向与速度变化的方向一致。

路程与位移的区别

位移

位移是物体从一个位置到另一个位置的直线距离,并且具有方向。位移是一个向量,既有大小(从初始位置到最终位置的直线距离)又有方向(从起点指向终点)。如果物体在时间 t 1 t_1 t1 时刻的位置是 x ( t 1 ) \mathbf{x}(t_1) x(t1),在时间 t 2 t_2 t2 时刻的位置是 x ( t 2 ) \mathbf{x}(t_2) x(t2),则位移是:
Δ x = x ( t 2 ) − x ( t 1 ) \Delta \mathbf{x} = \mathbf{x}(t_2) - \mathbf{x}(t_1) Δx=x(t2)x(t1)

位移只考虑初始位置和最终位置,而不考虑物体运动的路径。例如,从起点出发走了一圈回到起点,位移为零。

路程

路程是物体沿路径移动的总长度。路程是一个标量,仅有大小,没有方向。路程考虑物体运动的整个路径。例如,从起点出发走了一圈回到起点,路程是走过的总长度。

假设有一个人在一个圆形跑道上运动:
如果他从起点出发,绕跑道走了一圈回到起点:
位移 :零,因为初始位置和最终位置相同,直线距离为零。
路程 :跑道的周长,因为他沿着跑道走了一圈。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西笑生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值