深度学习基础 - 泰勒级数
flyfish
深受3Bule1Brown的影响,通俗易看的教程。
在说泰勒级数的时候,先说高阶导数
s
(
t
)
⇔
Displacement 位移
d
s
d
t
(
t
)
⇔
Velocity 速度
d
2
s
d
t
2
(
t
)
⇔
Acceleration 加速度
\begin{array}{l}{s(t) \Leftrightarrow \text { Displacement 位移}} \\ {\frac{d s}{d t}(t) \Leftrightarrow \text { Velocity 速度}} \\ {\frac{d^{2} s}{d t^{2}}(t) \Leftrightarrow \text { Acceleration 加速度}}\end{array}
s(t)⇔ Displacement 位移dtds(t)⇔ Velocity 速度dt2d2s(t)⇔ Acceleration 加速度
上面有2的看做二阶导数,有3的看做三阶导数.三阶导数是什么,叫Jerk,
位置矢量s对时间的一阶导数是速度Velocity
二阶导数则为加速度Acceleration,
位置矢量s的三阶导数,即加速度的变化率,称之为Jerk急动度。 如果叫加加速度是不是好记些。
位置矢量s的四阶导数是什么,用什么简短的词表达我不知道,难道是加加加速度?
d
3
s
d
t
3
(
t
)
⇔
J
e
r
k
\frac{d^{3} s}{d t^{3}}(t) \Leftrightarrow {Jerk}
dt3d3s(t)⇔Jerk
wiki上是这么表示的(注意r上是三个点,CSDN版本的markdown没解析出来,写三个点报错)
ȷ
⃗
(
t
)
=
d
a
⃗
(
t
)
d
t
=
a
⃗
˙
(
t
)
=
d
2
v
⃗
(
t
)
d
t
2
=
v
⃗
¨
(
t
)
=
d
3
r
⃗
(
t
)
d
t
3
=
r
⃗
¨
(
t
)
\vec{\jmath}(t)=\frac{\mathrm{d} \vec{a}(t)}{\mathrm{d} t}=\dot{\vec{a}}(t)=\frac{\mathrm{d}^{2} \vec{v}(t)}{\mathrm{d} t^{2}}=\ddot{\vec{v}}(t)=\frac{\mathrm{d}^{3} \vec{r}(t)}{\mathrm{d} t^{3}}= \ddot{\vec{r}}(t)
ȷ(t)=dtda(t)=a˙(t)=dt2d2v(t)=v¨(t)=dt3d3r(t)=r¨(t)
a
⃗
is acceleration 加速度
v
⃗
is velocity 速度,
r
⃗
is position 位移 ,
t
is time 时间.
\begin{array}{l}{\vec{a} \text { is acceleration 加速度 }} \\ {\vec{v} \text { is velocity 速度, }} \\ {\vec{r} \text { is position 位移 , }} \\ {t \text { is time 时间. }}\end{array}
a is acceleration 加速度 v is velocity 速度, r is position 位移 , t is time 时间.
看a,v,r上的点的个数。a上一个点,v上两个点,r上三个点。当看俄罗斯数学教材《微积分教程》菲赫金哥尔茨 写的,知道微积分的符号有多种表示方法。我看就像同一件事有的人用汉语表达,当用其他语言再表达时,看着符号都不习惯。
就看自己熟悉那种表示方法,还是wiki之前的那个容易看些,如是y上加一撇,y上加两撇,写起来更方便些。
理解高阶高数总得找个例子,高阶那就找个最低的高阶就是2。也就是加速度,以加速度来理解二阶导数
有的地方是Displacement,有的地方是position,我都写成位移了,没有区分位置,位移。位置看上去就是坐标轴上的一点,位移看上去就是一段距离
d
(
d
f
d
x
)
d
x
=
d
(
d
f
)
(
d
x
)
2
=
d
2
f
d
x
2
⏟
d
x
→
0
\underbrace{\frac{d\left(\frac{d f}{d x}\right)}{d x}=\frac{d(d f)}{(d x)^{2}}=\frac{d^{2} f}{d x^{2}}}_{d x \rightarrow 0}
dx→0
dxd(dxdf)=(dx)2d(df)=dx2d2f
上图中间表达的准确些
cos ( x ) ⟶ x = 0 1 d ( cos ) d x ( 0 ) = − sin ( 0 ) = 0 d 2 ( cos ) d x 2 ( 0 ) = − cos ( 0 ) = − 1 \begin{array}{l}{\cos (x) \stackrel{x=0}{\longrightarrow} 1} \\ {\frac{d(\cos )}{d x}(0)=-\sin (0)=0} \\ {\frac{d^{2}(\cos )}{d x^{2}}(0)=-\cos (0)=-1}\end{array} cos(x)⟶x=01dxd(cos)(0)=−sin(0)=0dx2d2(cos)(0)=−cos(0)=−1
P ( x ) = 1 + 0 x + c 2 x 2 d P d x ( x ) = 0 + 2 c 2 x d 2 P d x 2 ( x ) = 2 c 2 \begin{array}{l}{P(x)=1+0 x+c_{2} x^{2}} \\ {\frac{d P}{d x}(x)=0+2 c_{2} x} \\ {\frac{d^{2} P}{d x^{2}}(x)=2 c_{2}}\end{array} P(x)=1+0x+c2x2dxdP(x)=0+2c2xdx2d2P(x)=2c2
cos ( 0 ) = 1 d ( cos ) d x ( 0 ) = − sin ( 0 ) = 0 d 2 ( cos ) d x 2 ( 0 ) = − cos ( 0 ) = − 1 d 3 ( cos ) d x 3 ( 0 ) = sin ( 0 ) = 0 d 4 ( cos ) d x 4 ( 0 ) = cos ( 0 ) = 1 \begin{array}{l}{\cos (0)=1} \\ {\frac{d(\cos )}{d x}(0)=-\sin (0)=0} \\ {\frac{d^{2}(\cos )}{d x^{2}}(0)=-\cos (0)=-1} \\ {\frac{d^{3}(\cos )}{d x^{3}}(0)=\sin (0)=0} \\ {\frac{d^{4}(\cos )}{d x^{4}}(0)=\cos (0)=1}\end{array} cos(0)=1dxd(cos)(0)=−sin(0)=0dx2d2(cos)(0)=−cos(0)=−1dx3d3(cos)(0)=sin(0)=0dx4d4(cos)(0)=cos(0)=1
P ( x ) = 1 − 1 2 x 2 + 1 24 x 4 d 4 P d x 4 ( x ) = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 1 24 = 24 ⋅ 1 24 \begin{aligned} P(x) &=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \\ \frac{d^{4} P}{d x^{4}}(x) &=1 \cdot 2 \cdot 3 \cdot 4 \cdot \frac{1}{24} \\ &=24 \cdot \frac{1}{24} \end{aligned} P(x)dx4d4P(x)=1−21x2+241x4=1⋅2⋅3⋅4⋅241=24⋅241
P
(
x
)
=
1
+
0
x
1
1
!
+
−
1
x
2
2
!
+
0
x
3
3
!
+
1
x
4
4
!
⏟
+
⋯
P(x)=\underbrace{1+0 \frac{x^{1}}{1 !}+-1 \frac{x^{2}}{2 !}+0 \frac{x^{3}}{3 !}+1 \frac{x^{4}}{4 !}}_{\text { }}+\cdots
P(x)=
1+01!x1+−12!x2+03!x3+14!x4+⋯
底下大括号套的部分是泰勒多项式(Taylor polynomial)
f ( 0 ) d f d x ( 0 ) d 2 f d x 2 ( 0 ) d 3 f d x 3 ( 0 ) d 4 f d x 4 ( 0 ) \begin{array}{c}{f(0)} \\ {\frac{d f}{d x}(0)} \\ {\frac{d^{2} f}{d x^{2}}(0)} \\ {\frac{d^{3} f}{d x^{3}}(0)} \\ {\frac{d^{4} f}{d x^{4}}(0 )}\end{array} f(0)dxdf(0)dx2d2f(0)dx3d3f(0)dx4d4f(0)
P
(
x
)
=
f
(
0
)
+
d
f
d
x
(
0
)
x
1
1
!
+
d
2
f
d
x
2
(
0
)
x
2
2
!
+
d
3
f
d
x
3
(
0
)
x
3
3
!
+
⋯
P(x)=f(0)+\frac{d f}{d x}(0) \frac{x^{1}}{1 !}+\frac{d^{2} f}{d x^{2}}(0) \frac{x^{2}}{2 !}+\frac{d^{3} f}{d x^{3}}(0) \frac{x^{3}}{3 !}+\cdots
P(x)=f(0)+dxdf(0)1!x1+dx2d2f(0)2!x2+dx3d3f(0)3!x3+⋯
函数f(x)在x=0处的泰勒级数
P
(
x
)
=
f
(
0
)
+
f
′
(
0
)
1
!
x
+
f
′
′
(
0
)
2
!
x
2
+
f
(
3
)
(
0
)
3
!
x
3
+
⋯
P(x)=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{(3)}(0)}{3 !} x^{3}+\cdots
P(x)=f(0)+1!f′(0)x+2!f′′(0)x2+3!f(3)(0)x3+⋯
函数f(x)在x=a处的泰勒级数
P
(
x
)
=
f
(
a
)
+
f
′
(
a
)
1
!
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
f
(
3
)
(
a
)
3
!
(
x
−
a
)
3
+
⋯
P(x)=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{(3)}(a)}{3 !}(x-a)^{3}+\cdots
P(x)=f(a)+1!f′(a)(x−a)+2!f′′(a)(x−a)2+3!f(3)(a)(x−a)3+⋯
另一种方式 sigma notation
∑
n
=
0
∞
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n}
n=0∑∞n!f(n)(a)(x−a)n
简单看就是把各个导数用加号连接起来,如果加起来的项个数是有限的就是泰勒多项式,如果个数无限的就是泰勒级数。加号越多越精确。
就像三角函数里的级数,项越多越精确
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
…
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
(
2
n
)
!
\begin{array}{l}{\sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) !}} \\ {\cos x=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n) !}}\end{array}
sinx=x−3!x3+5!x5−7!x7+…=∑n=0∞(2n+1)!(−1)nx2n+1cosx=1−2!x2+4!x4−6!x6+⋯=∑n=0∞(2n)!(−1)nx2n