深度学习基础 - 勾股定理

本文探讨了勾股定理的历史起源,从中国古代的《周髀算经》到西方的毕达哥拉斯,展示了不同文化对这一数学原理的认识与应用。文章详细描述了勾股定理的内容,即直角三角形两直角边的平方和等于斜边的平方,并通过相似三角形的方法给出了证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习基础 - 勾股定理

flyfish

2019-03-14 21:47:19
在这里插入图片描述

直角三角形的两条直角边长分别是a和b,斜边长是h,数学语言是
a 2 + b 2 = h 2 a ^ { 2 } + b ^ { 2 } = h ^ { 2 } a2+b2=h2
勾股定理 用一句话说是直角三角形的两条直角边的平方和等于斜边的平方。

勾股定理也叫毕达哥拉斯定理(Pythagorean theorem)

《周髀算经》的开头里说关于周公与商高的对话,大意是
公元前11世纪,西周丞相周公姬旦将东征、分封、制礼三大工程同时推进,每天睡眠不足 4 小时;既要应对叛乱,又要处理流言,还要教育熊孩子周成王;西周初期没有纸张,所有文书靠竹简,写一个字相当于敲十行代码。
某个深夜他盯着地图上歪歪扭扭的黄河河道,突然灵魂发问:“商高啊,这天没电梯,地没卷尺,咋知道天多高、地多大?”
商高掏出一把青铜矩尺(古代工程师三件套:规、矩、准绳),在沙盘上画了个直角三角形:"领导您看,大禹治水时发现个秘密——当直角边是3和4的时候,斜边肯定是5。

周公:“所以这就能测天地?”
商高:"没错!当年大禹就是用这个方法,算出了龙门的高度和河道的曲直。
周公:这宇宙级难题你能解?
商高:就是我之前说的祖传黑科技!看这个3-4-5三角形,斜边平方永远等于两边平方和。当年大禹用这招搞定了整个黄河流域的测量。
周公:那要是边长不是3、4、5呢?
商高:…(沉默)目前只测过这些整数组合,…!

商高回答停留在具体数值(3、4、5),属于特殊案例,而非普适性定理。
那时候的人都已经认为形和数是一回事,有关联的。周公与商高的对话在公元前1100年左右的西周时期,大禹都距今4000多年了。

《周髀算经》中记述了(3,4,5)这一组勾股数,例如里面有周公问商高,荣方问陈子等就像子贡问曰一样。商高答周公里面就有3,4,5的事。里面还有赵爽的附录。《九章算术》有勾股定理怎么用的事,刘徽用勾股定理求圆周率。
西方的东西很多来自古希腊,古希腊多么的辉煌,古希腊古老的著作是欧几里得的《几何原本》,再往前就是毕达哥拉斯,在之前就是泰勒斯。西方人的参考来自古希腊所以叫毕达哥拉斯定理,毕达哥拉斯认为数学可以解释世界上的一切事物,同时认为一切真理都可以用比例、平方及直角三角形去反映和证实。但看历史毕达哥拉斯学派是宗教,他害死了发现根号2的学生希帕索斯,跟宗教裁判害死捍卫太阳中心说的布鲁诺是一模一样的,他们研究的很多都是巫术,经过取其精华去其糟粕之后才是数学.
三国时期的赵爽在对《周髀算经》注释中证明了勾股定理,这些是记录在《九章算术》中的.在《九章算术》中看赵爽写那么多字就为了描述勾股定理,还是文言文。
在纸还没流行的东汉时期,数学家赵爽在注解《周髀算经》时要在又窄又长的竹片上刻字,他解释勾股定理时,写下这样一段话:“勾广三,股修四,径隅五。勾自乘,股自乘,并之,开方除之,即弦。” 就是:“直角边 3 和 4,斜边肯定是 5。把两条直角边各自平方后相加,再开根号,就是斜边长度。”
这段话浓缩了赵爽对直角三角形的深刻理解,现代数学只需写成 c = a 2 + b 2 c = \sqrt{a^2 + b^2} c=a2+b2

  • 加减乘除用“并”“减”“乘”“除”表示;
  • 平方叫“自乘”,开根号叫“开方除之”;
  • 没有等号“=”,用“即”代替。

后人用字母、数字、符号等记录简单方便了许多。
法国的韦达在研究数学的时候,发现很多资料都是文字叙述的,跟我们看到赵爽用文言文描述勾股定理是一个感觉,太麻烦了,不管描述还是阅读效率很低的。因为伟达觉得麻烦,他就有意识的想解决这个问题,所以他用字母来表示已知数、未知数。他的后辈笛卡尔当然还是法国的笛卡尔用字母表的前几位表示已知数,后几位表示未知数。所以后来的式子abc表示的是已知数,xyz就是用来表示未知数的,如果只有一个未知数那就是x。
《九章算术》里的赵爽发明勾股定理,《几何原本》的毕达哥拉斯也发明了勾股定理, 距今4000多年前的大禹发现的是勾股数,不是证明了勾股定理, 从周公与商高的对话看,商高也没有直面回答周公的问题.猜想商高意思是天高地大没法直接测,需要借助一些人们发现规律去寻找答案,至于天多高,地多大,我现在也不知道.
在发现勾股数的情况下就能应用而不是勾股定理被发现之后才开始应用,古埃及人的金字塔中的墓室就是按照勾股数设计的尺寸。
怎么证明呢?方法有太多种,这里举一例
图片来自wiki
在这里插入图片描述
利用相似三角形证明
因为: b c = d b 所以: b 2 = c × d 因为: a c = e a 所以: a 2 = c × e 所以: b 2 + a 2 = ( c × d ) + ( c × e ) 所以: b 2 + a 2 = c × ( d + e ) 所以: b 2 + a 2 = c × c 所以: b 2 + a 2 = c 2 \begin{array}{l}因为: \frac{b}{c}=\frac{d}{b} \quad 所以: b^{2}=c \times d \\ { { 因为: } \frac{a}{c}=\frac{e}{a} \quad 所以: a^{2}=c \times e} \\ {所以: b^{2}+a^{2}=(c \times d)+(c \times e)} \\ {所以: b^{2}+a^{2}=c \times(d+e)} \\ {所以 : b^{2}+a^{2}=c \times c} \\ {所以: b^{2}+a^{2}=c^{2} }\end{array} 因为:cb=bd所以:b2=c×d因为:ca=ae所以:a2=c×e所以:b2+a2=(c×d)+(c×e)所以:b2+a2=c×(d+e)所以:b2+a2=c×c所以:b2+a2=c2
定理是怎样被发现的
在这里插入图片描述

<think>嗯,用户让我用中文介绍MATLAB和勾股定理。首先,我得确认自己对这两个主题的理解是否足够全面。MATLAB是一个数学软件,主要用于数值计算、数据分析和算法开发,对吧?而勾股定理是数学中的基础定理,直角三角形三边的关系。不过,用户可能希望知道它们的具体内容、应用以及可能的联系。 先想想MATLAB的介绍。应该包括它的全称Matrix Laboratory,由MathWorks公司开发,主要特点比如矩阵运算、绘图功能、工具箱等。还要提一下它在工程和科学领域的应用,比如信号处理、图像处理、控制系统设计等等。可能需要举几个例子说明MATLAB的用途,比如如何用MATLAB进行矩阵运算或者绘制图形。 然后是勾股定理。要解释定理的内容,即直角三角形的两条直角边的平方和等于斜边的平方。公式是a² + b² = c²。可能需要提到它的历史背景,比如毕达哥拉斯发现的,不过也有说法是古代中国或巴比伦早有记载。应用方面,比如测量距离、建筑设计、导航等。还可以说明在三维空间中的推广形式,比如两点之间的距离计算。 接下来考虑用户可能的深层需求。用户同时提到MATLAB和勾股定理,可能想了解如何在MATLAB中应用勾股定理?或者只是分别介绍两个概念?需要判断是否需要将两者结合起来,比如给出一个MATLAB实现勾股定理计算的例子。这样会让回答更实用,帮助用户理解如何在实际中使用MATLAB进行数学计算。 检查是否有遗漏点。比如MATLAB的编程环境、Simulink集成、支持的其他功能如机器学习深度学习等。勾股定理的证明方法,比如几何证明或者代数证明,但用户可能不需要太深入的证明,而是更关注应用。 还要注意语言要简洁明了,避免使用过于专业的术语,但也要准确。可能需要分段,先分别介绍两者,然后如果有联系的话再结合起来。比如在MATLAB中如何计算直角三角形的斜边,或者验证勾股定理的正确性。 现在组织一下结构:首先分两部分,MATLAB和勾股定理。每个部分下分点介绍,比如定义、特点、应用等。最后可以加一个结合两者的例子,用MATLAB实现勾股定理的计算,这样用户可以看到实际应用。 比如: MATLAB部分: - 定义和背景 - 主要功能和特点 - 应用领域 - 示例代码(比如简单的矩阵运算或绘图) 勾股定理部分: - 定理内容及公式 - 历史背景 - 应用场景 - 示例(计算斜边长度) 结合部分: - 在MATLAB中用勾股定理计算直角三角形的斜边,并验证结果。 这样结构清晰,内容全面。需要注意示例代码的正确性,比如输入两个直角边长度,计算斜边,并输出结果。或者绘制直角三角形图形,帮助可视化。 最后检查是否有错误,比如MATLAB的拼写是否正确,勾股定理的公式是否正确,历史背景是否准确,应用例子是否合理。确保信息准确无误,并且易于理解。</think>### MATLAB 介绍 **定义与背景** MATLAB(Matrix Laboratory)是由美国MathWorks公司开发的商用数学软件,专注于数值计算、数据分析和算法开发。其核心设计基于矩阵运算,适合处理线性代数、微分方程等数学问题。 **主要功能与特点** 1. **矩阵运算**:直接支持矩阵操作,例如矩阵乘法、求逆等。 2. **绘图与可视化**:提供丰富的绘图函数,可生成2D/3D图形、动态可视化效果。 3. **工具箱扩展**:包含数十种专业工具箱(如信号处理、图像处理、机器学习),扩展应用场景。 4. **Simulink集成**:结合Simulink模块,支持系统建模与仿真。 **应用领域** - 工程计算(控制系统设计、通信系统仿真) - 科学研究(物理建模、金融数据分析) - 人工智能(深度学习模型训练、计算机视觉) **示例代码** ```matlab % 计算矩阵乘法 A = [1, 2; 3, 4]; B = [5, 6; 7, 8]; C = A * B; % 绘制正弦曲线 x = 0:0.1:2*pi; plot(x, sin(x)); title('正弦函数波形'); ``` --- ### 勾股定理 **定理内容** 在直角三角形中,直角边的平方和等于斜边的平方,公式为: \[ a^2 + b^2 = c^2 \] 其中,\(a\)、\(b\) 为直角边,\(c\) 为斜边。 **历史背景** - 古希腊数学家毕达哥拉斯(Pythagoras)提出,但古巴比伦、古中国(《周髀算经》)也有类似记载。 - 中国古称“毕达哥拉斯定理”为“商高定理”。 **应用场景** 1. **测量距离**:已知两点坐标 \((x_1,y_1)\) 和 \((x_2,y_2)\),距离 \(d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\)。 2. **三维扩展**:空间两点距离公式 \(d = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}\)。 3. **工程建造**:确保直角结构的精度(如房屋墙角、桥梁支架)。 --- ### 结合MATLAB与勾股定理的实例 **计算直角三角形斜边** ```matlab a = input('请输入直角边a的长度:'); b = input('请输入直角边b的长度:'); c = sqrt(a^2 + b^2); fprintf('斜边c的长度为:%.2f\n', c); ``` **运行结果示例** ``` 请输入直角边a的长度:3 请输入直角边b的长度:4 斜边c的长度为:5.00 ``` **可视化验证** ```matlab % 绘制直角三角形 vertices = [0,0; a,0; 0,b]; patch('Faces', [1,2,3], 'Vertices', vertices, 'FaceColor', 'yellow'); axis equal; text(a/2, 0, 'a', 'VerticalAlignment', 'top'); text(0, b/2, 'b', 'HorizontalAlignment', 'right'); text(a/2, b/2, sprintf('c=%.2f', c), 'Color', 'red'); ``` 此代码会生成一个黄色直角三角形,并标注边长,直观展示勾股定理的几何意义。 --- 通过MATLAB的数值计算与图形功能,用户既能高效解决数学问题,又能直观理解定理的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值