【数学】数列极限(宇哥笔记)

在这里插入图片描述

定义

数列

按照一定顺序排列的“有开头无结尾”的数叫(无穷)数列。

x 1 , x 2 , … , x n , … 首 项 通 项 x_1,x_2,\ldots,x_n,\ldots\\ \quad首项\quad\quad\quad通项\quad\quad x1,x2,,xn,
数列极限
∀ ϵ &gt; 0 , ∃ N &gt; 0 , n &gt; N 时 , ∣ x n − A ∣ &lt; ϵ &ThickSpace; ⟺ &ThickSpace; lim ⁡ n → ∞ x n = A &ThickSpace; ⟺ &ThickSpace; { x n } 收 敛 于 A [ 注 ] 1. n 为 正 整 数 ; 2. lim ⁡ n → ∞ x n + 1 = A 也 常 用 \forall\epsilon&gt;0,\exists N&gt;0,n&gt;N时,\mid x_n-A\mid&lt;\epsilon\iff\lim_{n\to\infty}x_n=A\iff \lbrace x_n\rbrace收敛于A\\ \color{grey}[注]1.n为正整数;2.\lim_{n\to\infty}x_{n+1}=A也常用 ϵ>0,N>0,n>NxnA<ϵnlimxn=A{xn}A[]1.n2.nlimxn+1=A

性质

1. 唯 一 性   lim ⁡ n → ∞ x n = A &ThickSpace; ⟹ &ThickSpace; A 唯 一              2. 有 界 性   lim ⁡ n → ∞ x n = A &ThickSpace; ⟹ &ThickSpace; ∣ x n ∣ ≤ M       3. 保 号 性   若 x n ≥ 0 , lim ⁡ n → ∞ x n = A , 则 A ≥ 0 1.唯一性\ \lim_{n\to\infty}x_n=A\implies A唯一\ \ \ \ \ \ \ \ \ \ \ \ \\ 2.有界性\ \lim_{n\to\infty}x_n=A\implies\mid x_n\mid\leq M\ \ \ \ \ \\ 3.保号性\ 若x_n\geq0,\lim_{n\to\infty}x_n=A,则A\geq0\\ 1. nlimxn=AA            2. nlimxn=AxnM     3. xn0,nlimxn=A,A0
考法

1.直接计算法
2.单调有界法则
3.定义法
4.夹逼准则
5.定积分定义

直接计算法

两 个 公 式 : 1. S n = a + a q + a q 2 + … + a q n − 1 = a ( 1 − q n ) 1 − q ( q ̸ = 1 ) 2. ∣ q ∣ &lt; 1 , lim ⁡ n → ∞ S n = lim ⁡ n → ∞ a ( 1 − q n ) 1 − q = a 1 − q 两个公式:1.S_n=a+aq+aq^2+\ldots+aq^{n-1}=\frac{a(1-q^n)}{1-q}(q\not=1)\\2.\mid q\mid&lt;1,\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a(1-q^n)}{1-q}=\frac{a}{1-q}\\ 1.Sn=a+aq+aq2++aqn1=1qa(1qn)(q̸=1)2.q<1,nlimSn=nlim1qa(1qn)=1qa
[ 例 1 ] 设 a 0 = 0 , a 1 = 1 , a n + a n − 1 = 2 a n + 1 , 求 lim ⁡ n → ∞ a n \color{maroon}[例1]设a_0=0,a_1=1,a_n+a_{n-1}=2a_{n+1},求\lim_{n\to\infty}a_n\\ [1]a0=0,a1=1,an+an1=2an+1,nliman
[ 分 析 ] a n + 1 = a n + a n − 1 2 &ThickSpace; ⟹ &ThickSpace; 做 差 a n + 1 − a n = a n + a n − 1 2 − a n = a n − 1 − a n 2 = − 1 2 ( a n − a n − 1 ) = ( − 1 2 ) n ( a 1 − a 0 ) 即 a n + 1 − a n = ( − 1 2 ) n   ∴ a n = ( a n − a n − 1 ) + ( a n − 1 − a n − 2 ) + ( a n − 2 − a n − 3 ) + … + ( a 1 − a 0 ) + a 0 = ( − 1 2 ) n − 1 + ( − 1 2 ) n − 2 + … + 1 = 1 ⋅ [ 1 − ( − 1 2 ) n ] 1 − ( − 1 2 ) 故 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ 1 − ( − 1 2 ) n 1 − ( − 1 2 ) = 2 3 [分析]a_{n+1}=\frac{a_n+a_{n-1}}{2}\implies\\做差a_{n+1}-a_n=\frac{a_n+a_{n-1}}{2}-a_n=\frac{a_{n-1}-a_{n}}{2}=-\frac12(a_n-a_{n-1})\\ =(-\frac12)^n(a_1-a_0)\\ 即a_{n+1}-a_n=(-\frac12)^n \ \therefore a_n=(a_n-a_{n-1})+(a_{n-1}-a_{n-2})+(a_{n-2}-a_{n-3})+\ldots+(a_1-a_0)+a_0\\ =(-\frac12)^{n-1}+(-\frac12)^{n-2}+\ldots+1=\frac{1\cdot[1-(-\frac12)^n]}{1-(-\frac12)} \\ 故\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1-(-\frac12)^n}{1-(-\frac12)}=\frac23 []an+1=2an+an1an+1an=2an+an1an=2an1an=21(anan1)=(21)n(a1a0)an+1an=(21)n an=(anan1)+(an1an2)+(an2an3)++(a1a0)+a0=(21)n1+21)n2++1=1(21)1[1(21)n]nliman=nlim1(21)1(21)n=32
[ 变 体 一 ] 设 x 1 = 1 , x 2 = 2 , x n + 2 = x n + 1 ⋅ x n , 求 lim ⁡ n → ∞ x n \color{maroon}[变体一]设x_1=1,x_2=2,x_{n+2}=\sqrt{x_{n+1}\cdot x_n},求\lim_{n\to\infty}x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ []x1=1,x2=2,xn+2=xn+1xn ,nlimxn
[ 分 析 ] 取 对 数 , ln ⁡ x n + 2 = ln ⁡ x n + 1 ⋅ x n = 1 2 ln ⁡ x n + 1 + 1 2 ln ⁡ x n 令 y n = ln ⁡ x n &ThickSpace; ⟹ &ThickSpace; y n + 2 = 1 2 ( y n + 1 + y n ) 故 y n + 2 − y n + 1 = 1 2 ( y n + 1 + y n ) − y n + 1 = − 1 2 ( y n + 1 − y n ) = ( − 1 2 ) n ( y 2 − y 1 ) = ln ⁡ 2 ( − 1 2 ) n y n = ( y n − y n − 1 ) + ( y n − 1 − y n − 2 ) + … + ( y 2 − y 1 ) + y 1 = ln ⁡ 2 [ ( − 1 2 ) n − 2 + ( − 1 2 ) n − 3 + … + 1 ]      = ln ⁡ 2 ⋅ 1 ⋅ [ 1 − ( − 1 2 ) n − 1 ] 1 − ( − 1 2 ) &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ y n = ln ⁡ 2 ⋅ 2 3 = lim ⁡ n → ∞ ln ⁡ x n &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ x n = e 2 3 ln ⁡ 2 = 2 2 3 [分析]取对数,\ln{x_{n+2}}=\ln{\sqrt{x_{n+1}\cdot x_n}}=\frac12\ln{x_{n+1}}+\frac12\ln x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 令y_n=\ln{x_n}\implies y_{n+2}=\frac12(y_{n+1}+y_n)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 故 y_{n+2}-y_{n+1}=\frac12(y_{n+1}+y_n)-y_{n+1}=-\frac12(y_{n+1}-y_n)=(-\frac12)^n(y_2-y_1)=\ln 2(-\frac12)^n\qquad\\ y_n=(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\ldots+(y_2-y_1)+y_1=\ln2[(-\frac12)^{n-2}+(-\frac12)^{n-3}+\ldots+1]\\ \ \ \ \ =\ln2\cdot\frac{1\cdot[1-(-\frac12)^{n-1}]}{1-(-\frac12)}\implies\lim_{n\to\infty}y_n=\ln2\cdot\frac23=\lim_{n\to\infty}\ln x_n\implies\lim_{n\to\infty}x_n=e^{\frac23\ln 2}=2^{\frac23} []lnxn+2=lnxn+1xn =21lnxn+1+21lnxnyn=lnxnyn+2=21(yn+1+yn)yn+2yn+1=21(yn+1+yn)yn+1=21(yn+1yn)=(21)n(y2y1)=ln2(21)nyn=(ynyn1)+(yn1yn2)++(y2y1)+y1=ln2[(21)n2+(21)n3++1]    =ln21(21)1[1(21)n1]nlimyn=ln232=nlimlnxnnlimxn=e32ln2=232
[ 变 体 二 ] 设 a 1 = 1 , a 2 = 2 , a n + 2 = 2 a n a n + 1 a n + a n + 1 , n = 1 , 2 , … ( Ⅰ ) 求 b n = 1 a n + 1 − 1 a n 的 表 达 式 并 求 ∑ k = 1 n b k ( Ⅱ ) 求 lim ⁡ n → ∞ a n \color{maroon}[变体二]设a_1=1,a_2=2,a_{n+2}=\frac{2a_na_{n+1}}{a_n+a_{n+1}},n=1,2,\ldots\\ \color{maroon}(Ⅰ)求b_n=\frac{1}{a_{n+1}}-\frac1{a_n}的表达式并求\sum_{k=1}^nb_k\qquad\qquad\qquad\\ \color{maroon}(Ⅱ)求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ []a1=1,a2=2,an+2=an+an+12anan+1,n=1,2,()bn=an+11an1k=1nbk()nliman
[ 分 析 ] ( Ⅰ ) 求 倒 数 1 a n + 2 = a n + a n + 1 2 a n a n + 1 = 1 2 ( 1 a n + 1 a n + 1 )       ∴ 1 a n + 2 − 1 a n + 1 = 1 2 ( 1 a n + 1 a n + 1 ) − 1 a n + 1      = ( − 1 2 ) ( 1 a n + 1 − 1 a n ) = ( − 1 2 ) n ( 1 a 2 − 1 a 1 ) = ( − 1 2 ) n + 1 b n = 1 a n + 1 − 1 a n = ( − 1 2 ) n ∑ k = 1 n b k = ( − 1 2 ) 1 + ( − 1 2 ) 2 + … + ( − 1 2 ) n = ( − 1 2 ) [ 1 − ( − 1 2 ) n ] 1 − ( − 1 2 ) ( Ⅱ ) ∑ k = 1 n b k = b 1 + b 2 + … + b k = ( 1 a 2 − 1 a 1 ) + ( 1 a 3 − 1 a 2 ) + … + ( 1 a n + 1 − 1 a n ) = 1 a n + 1 − 1 a 1 &ThickSpace; ⟹ &ThickSpace; a n + 1 = 1 ∑ k = 1 n b k + 1 故 lim ⁡ n → ∞ a n + 1 = 3 2 [分析](Ⅰ)求倒数\frac{1}{a_{n+2}}=\frac{a_n+a_{n+1}}{2a_na_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})\ \ \ \ \ \\ \therefore\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})-\frac{1}{a_{n+1}}\\ \ \ \ \ \qquad\qquad=(-\frac12)(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\ \qquad\qquad\qquad\qquad\qquad=(-\frac12)^n(\frac{1}{a_{2}}-\frac{1}{a_{1}})=(-\frac12)^{n+1}\\ b_n=\frac{1}{a_{n+1}}-\frac1{a_n}=(-\frac12)^n\qquad\qquad\\ \qquad\qquad\sum_{k=1}^nb_k=(-\frac12)^1+(-\frac12)^2+\ldots+(-\frac12)^n=\frac{(-\frac12)[1-(-\frac12)^n]}{1-(-\frac12)}\\ (Ⅱ)\sum_{k=1}^nb_k=b_1+b_2+\ldots+b_k\qquad\qquad\qquad\qquad\\ =(\frac{1}{a_{2}}-\frac{1}{a_{1}})+(\frac{1}{a_{3}}-\frac{1}{a_{2}})+\ldots+(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\ =\frac{1}{a_{n+1}}-\frac{1}{a_1}\implies a_{n+1}=\frac{1}{\sum_{k=1}^nb_k+1}\qquad\quad\\ 故\lim_{n\to\infty}a_{n+1}=\frac32\qquad\qquad\qquad\qquad\qquad\qquad\qquad []()an+21=2anan+1an+an+1=21(an1+an+11)     an+21an+11=21(an1+an+11)an+11    =(21)(an+11an1)=(21)n(a21a11)=(21)n+1bn=an+11an1=(21)nk=1nbk=(21)1+(21)2++(21)n=1(21)(21)[1(21)n]()k=1nbk=b1+b2++bk=(a21a11)+(a31a21)++(an+11an1)=an+11a11an+1=k=1nbk+11nliman+1=23

单调有界准则

定 义 { { x n } ↑ 且 有 上 界 { x n } ↓ 且 有 下 界 &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ x n 存 在 要 点 { 作 差 x n + 1 − x n 作 商 x n + 1 x n 数 学 归 纳 法 、 不 等 式 、 有 提 示 x n + 1 = f ( x ) , 证 明 lim ⁡ n → ∞ 存 在 并 求 之 \left.定义\begin{cases}\lbrace x_n\rbrace\uparrow且有上界\\\lbrace x_n\rbrace\downarrow且有下界 \end{cases}\right.\implies\lim_{n\to\infty}x_n存在\qquad\quad\\ \left.要点\begin{cases}作差x_{n+1}-x_n\\作商\frac{x_{n+1}}{x_n}\end{cases}\right.数学归纳法、不等式、有提示\\ x_{n+1}=f(x),证明\lim_{n\to\infty}存在并求之\qquad\qquad\qquad {{xn}{xn}nlimxn{xn+1xnxnxn+1xn+1=f(x),nlim
[ 例 1 ] { a n } ↓ , { b n } ↑ , lim ⁡ n → ∞ ( a n − b n ) = 0 , 证 明 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = 存 在 \color{maroon}[例1]\lbrace a_n\rbrace\downarrow,\lbrace b_n\rbrace\uparrow,\lim_{n\to\infty}(a_n-b_n)=0,证明\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=存在\qquad\qquad\\ [1]{an},{bn},nlim(anbn)=0,nliman=nlimbn=
[ 分 析 ] 由 于 lim ⁡ n → ∞ ( a n − b n ) = 0 ∃ &ThickSpace; ⟹ &ThickSpace; A ≤ a n − b n ≤ B ( 极 限 若 存 在 , 数 列 必 有 界 ) ∴ a n ≥ A + b n ≥ A + b   下 界    b n ≤ a n − A ≤ a 1 − A   上 界 由 于 极 限 存 在 , lim ⁡ n → ∞ ( a n − b n ) = lim ⁡ n → ∞ a n − lim ⁡ n → ∞ b n = 0 [分析]由于\lim_{n\to\infty}(a_n-b_n)=0\exists\implies A\leq a_n-b_n\leq B(极限若存在,数列必有界)\\ \therefore a_n\geq A+b_n\geq A+b \ 下界 \ \ b_n\leq a_n-A\leq a_1-A \ 上界\qquad\qquad\\ 由于极限存在,\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n=0\qquad\qquad\qquad []nlim(anbn)=0AanbnB()anA+bnA+b   bnanAa1A nlim(anbn)=nlimannlimbn=0
[ 例 2 ] x 1 = 2 , x n + ( x n − 4 ) x n − 1 = 3 , n = 2 , 3 … , 证 明 lim ⁡ n → ∞ x n 存 在 并 求 之 \color{maroon}[例2]x_1=2,x_n+(x_n-4)x_{n-1}=3,n=2,3\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\quad\\ [2]x1=2,xn+(xn4)xn1=3,n=2,3,nlimxn
[ 分 析 ] { 1. x 1 = 2 , x 2 = 3 + 4 ⋅ 2 1 + 2 = 11 3 &gt; x 1 &gt; 0 2. 设 x k &gt; x k − 1 &gt; 0 3. 证 明 x k + 1 − x k = 3 + a x k 1 + x k − 3 + 4 x k − 1 1 + x k − 1 = x k − x k − 1 ( 1 + x k ) ( 1 + x k + 1 ) &gt; 0 &ThickSpace; ⟹ &ThickSpace; x k + 1 &gt; x k &gt; 0 &ThickSpace; ⟹ &ThickSpace; { x n } ↑ x n = 3 + 4 x n − 1 1 + x n − 1 = 4 + 4 x n − 1 − 1 1 + x n − 1 = 4 − 1 1 + x n − 1 &lt; 4 故 lim ⁡ n → ∞ x n = a &ThickSpace; ⟹ &ThickSpace; A = 3 + 4 A 1 + A &ThickSpace; ⟹ &ThickSpace; A = 3 ± 21 2 由 x n &gt; 0 &ThickSpace; ⟹ &ThickSpace; A ≥ 0 &ThickSpace; ⟹ &ThickSpace; A = 3 + 21 2 [分析]\begin{cases}1.x_1=2,x_2=\frac{3+4\cdot 2}{1+2}=\frac{11}3&gt;x_1&gt;0\\2.设x_k&gt;x_{k-1}&gt;0\\ 3.证明x_{k+1}-x_k=\frac{3+ax_k}{1+x_k}-\frac{3+4x_{k-1}}{1+x_{k-1}}=\frac{x_k-x_{k-1}}{(1+x_k)(1+x_{k+1})}&gt;0\implies x_{k+1}&gt;x_k&gt;0\implies\lbrace x_n\rbrace\uparrow\end{cases} \\x_n=\frac{3+4x_{n-1}}{1+x_{n-1}}=\frac{4+4x_{n-1}-1}{1+x_{n-1}}=4-\frac{1}{1+x_{n-1}}&lt;4\qquad\qquad\qquad\qquad\qquad\qquad\\ 故\lim_{n\to\infty}x_n=a\implies A=\frac{3+4A}{1+A}\implies A=\frac{3\pm\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ 由x_n&gt;0\implies A\geq0\implies A=\frac{3+\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad []1.x1=2,x2=1+23+42=311>x1>02.xk>xk1>03.xk+1xk=1+xk3+axk1+xk13+4xk1=(1+xk)(1+xk+1)xkxk1>0xk+1>xk>0{xn}xn=1+xn13+4xn1=1+xn14+4xn11=41+xn11<4nlimxn=aA=1+A3+4AA=23±21 xn>0A0A=23+21
[ 例 3 ] a &gt; 0 , x n = a n n ! , n = 1 , 2 , … , 证 明 lim ⁡ n → ∞ x n 存 在 并 求 之 \color{maroon}[例3]a&gt;0,x_n=\frac{a_n}{n!},n=1,2,\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [3]a>0,xn=n!an,n=1,2,,nlimxn
[ 分 析 ] 显 然 x n &gt; 0 , x n + 1 x n = a n + 1 ( n + 1 ) ! ⋅ n ! a n = a n + 1      当 n + 1 &gt; a &gt; 0   即   n &gt; a − 1 时 , a n + 1 &lt; 1 &ThickSpace; ⟹ &ThickSpace; x n + 1 x n &lt; 1 &ThickSpace; ⟹ &ThickSpace; x n + 1 &lt; x n &ThickSpace; ⟹ &ThickSpace; { x n } ↓ 得 lim ⁡ n → ∞ x n = A 且 x n + 1 = a n + 1 x n &ThickSpace; ⟹ &ThickSpace; A = 0 ⋅ A = 0 [分析]显然x_n&gt;0,\frac{x_{n+1}}{x_n}=\frac{a_{n+1}}{(n+1)!}\cdot\frac{n!}{a_n}=\frac a{n+1}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \ \\ 当n+1&gt;a&gt;0\ 即\ n&gt;a-1时,\frac{a}{n+1}&lt;1\implies \frac{x_{n+1}}{x_n}&lt;1\implies x_{n+1}&lt;x_n\implies \lbrace x_n\rbrace\downarrow\\ 得\lim_{n\to\infty}x_n=A且x_{n+1}=\frac{a}{n+1}x_n\implies A=0\cdot A=0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad []xn>0,xnxn+1=(n+1)!an+1ann!=n+1a    n+1>a>0  n>a1n+1a<1xnxn+1<1xn+1<xn{xn}nlimxn=Axn+1=n+1axnA=0A=0
[ 例 4 ] 设 f ( x ) 在 [ 0 , + ∞ ) 上 连 续 , 0 ≤ f ( x ) ≤ x 1 , x ∈ [ 0 , + ∞ ) , 若 a 1 ≥ 0 , a n + 1 = f ( a n ) , n = 1 , 2 , … ( Ⅰ ) 证 明 lim ⁡ n → ∞ a n 存 在 , 记 为 A , 且 A = f ( A ) ( Ⅱ ) 若 条 件 改 为 0 ≤ f ( x ) &lt; x , x ∈ ( 0 , + ∞ ) , 求 lim ⁡ n → ∞ a n     \color{maroon}[例4]设f(x)在[0,+\infty)上连续,0\leq f(x)\leq x_1,x\in[0,+\infty),若a_1\geq0,a_{n+1}=f(a_n),n=1,2,\ldots\\ \color{maroon}(Ⅰ)证明\lim_{n\to\infty}a_n存在,记为A,且A=f(A)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ \color{maroon}(Ⅱ)若条件改为0\leq f(x)&lt;x,x\in(0,+\infty),求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \\ [4]f(x)[0,+)0f(x)x1,x[0,+),a10,an+1=f(an),n=1,2,()nlimanAA=f(A)()0f(x)<x,x(0,+),nliman   
[ 分 析 ] ( Ⅰ ) a n + 1 − a n = f ( a n ) − a n ≤ 0 , 显 然 a n + 1 = f ( a n ) ≥ 0 &ThickSpace; ⟹ &ThickSpace; a n + 1 ≤ a n &ThickSpace; ⟹ &ThickSpace; { a n } ↓   &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ a n     存 在     → A = lim ⁡ n → ∞ f ( a n )     连 续     → f ( lim ⁡ n → ∞ a n ) = f ( A )        ( Ⅱ ) a n ≥ 0 &ThickSpace; ⟹ &ThickSpace; A ≥ 0 , 若 A &gt; 0 , f ( A ) &lt; A , 与 A = f ( A ) 矛 盾 , 故 A = 0 &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ a n = 0 [分析](Ⅰ)a_{n+1}-a_n=f(a_n)-a_n\leq0,显然a_{n+1}=f(a_n)\geq0\implies a_{n+1}\leq a_n\implies\lbrace a_n\rbrace\downarrow\qquad\ \\ \implies\lim_{n\to\infty}a_n\underrightarrow{\ \ \ 存在\ \ \ }A=\lim_{n\to\infty}f(a_n)\underrightarrow{\ \ \ 连续\ \ \ }f(\lim_{n\to\infty}a_n)=f(A)\qquad\qquad\qquad\qquad\\ \ \ \ \ \ \ (Ⅱ)a_n\geq0\implies A\geq0,若A&gt;0,f(A)&lt;A,与A=f(A)矛盾,故A=0\implies \lim_{n\to\infty}a_n=0 []()an+1an=f(an)an0,an+1=f(an)0an+1an{an} nliman       A=nlimf(an)       f(nliman)=f(A)      ()an0A0,A>0,f(A)<A,A=f(A)A=0nliman=0

定义法

构 造 ∣ x n − a ∣ &ThickSpace; ⟹ &ThickSpace; x n − a → 0 , 即 lim ⁡ n → ∞ x n = a { 放 缩 法 拉 格 朗 日 : f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) 构造\mid x_n-a\mid\implies x_n-a\rightarrow0,即\lim_{n\to\infty}x_n=a\begin{cases}放缩法\\拉格朗日:f(b)-f(a)=f&#x27;(\xi)(b-a)\end{cases} xnaxna0,nlimxn=a{:f(b)f(a)=f(ξ)(ba)
[ 例 1 ] x 1 ≥ − 12 , x n + 1 = 12 + x n , n = 1 , 2 , … , 求 lim ⁡ n → ∞ x n \color{maroon}[例1]x_1\geq-12,x_{n+1}=\sqrt{12+x_n},n=1,2,\ldots,求\lim_{n\to\infty}x_n\\ [1]x112,xn+1=12+xn ,n=1,2,,nlimxn
[ 分 析 ] 若 lim ⁡ n → ∞ x n = A , 则 A = 12 + A , 则 A = 4 构 造 ∣ x n − 4 ∣ = ∣ 12 + x n − 1 − 4 ∣ = ∣ x n − 1 ∣ − 4 12 + x n − 1 + 4 ≤ 1 4 ∣ x n − 1 − 4 ∣ ≤ ( 1 4 ) 2 ∣ x n − 2 − 4 ∣ ≤ ( 1 4 ) n − 1 ∣ x 1 − 4 ∣ lim ⁡ n → ∞ ∣ x n − 4 ∣ = 0 &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ x n = 4 [分析]\color{grey}若\lim_{n\to\infty}x_n=A,则A=\sqrt{12+A},则A=4\\ 构造\mid x_n-4\mid=\mid\sqrt{12+x_{n-1}}-4\mid=\frac{\mid x_{n-1}\mid-4}{\sqrt{12+x_{n-1}}+4}\leq\frac14\mid x_{n-1}-4\mid\\ \leq(\frac14)^2\mid x_{n-2}-4\mid\\ \leq(\frac14)^{n-1}\mid x_{1}-4\mid\\ \lim_{n\to\infty}\mid x_{n}-4\mid=0\implies\lim_{n\to\infty}x_n=4\qquad\qquad\qquad\qquad []nlimxn=A,A=12+A ,A=4xn4=12+xn1 4=12+xn1 +4xn1441xn14(41)2xn24(41)n1x14nlimxn4=0nlimxn=4
[ 例 2 ] 设 f ( x ) 在 [ a , b ] 上 可 导 , ∣ f ′ ( x ) ∣ ≤ 1 2 , 对 x 0 ∈ ( a , b ) 有 x 0 = f ( x 0 ) , ∀ x 1 ∈ [ a , b ] , x n + 1 = f ( x n ) , n = 1 , 2 , … , 证 明 lim ⁡ n → ∞ x n 存 在 且 lim ⁡ n → ∞ x n = x 0 \color{maroon}[例2]设f(x)在[a,b]上可导,\mid f&#x27;(x)\mid\leq\frac12,对x_0\in(a,b)有x_0=f(x_0),\forall x_1\in[a,b],x_{n+1}=f(x_n),n=1,2,\ldots,\\ \color{maroon}证明\lim_{n\to\infty}x_n存在且\lim_{n\to\infty}x_n=x_0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [2]f(x)[a,b]f(x)21,x0(a,b)x0=f(x0),x1[a,b],xn+1=f(xn),n=1,2,,nlimxnnlimxn=x0
[ 分 析 ] ∣ x n − x 0 ∣ = ∣ f ( x n − 1 ) − f ( x 0 ) ∣ = ∣ f ′ ( ξ ) ∣ ∣ x n − 1 − x 0 ∣ ≤ 1 2 ∣ x n − 1 − x 0 ∣ ≤ ( 1 2 ) 2 ∣ x n − 2 − x 0 ∣ ≤ ( 1 2 ) n − 1 ∣ x 1 − x 0 ∣ &ThickSpace; ⟹ &ThickSpace; lim ⁡ n → ∞ x n = x 0 [分析]\mid x_n-x_0\mid=\mid f(x_{n-1})-f(x_0)\mid=\mid f&#x27;(\xi)\mid\mid x_{n-1}-x_0\mid \\ \leq\frac12\mid x_{n-1}-x_0\mid\\ \leq(\frac12)^2\mid x_{n-2}-x_0\mid \\ \leq(\frac12)^{n-1}\mid x_{1}-x_0\mid \\ \implies\lim_{n\to\infty}x_n=x_0 []xnx0=f(xn1)f(x0)=f(ξ)xn1x021xn1x0(21)2xn2x0(21)n1x1x0nlimxn=x0

夹逼准则

定 义 { y n ≤ x n ≤ z n ( 不 验 等 号 ) ↓ ⇓   ↓ A → A ← A 考 法 { 1. ∑ i = 1 n u i = u 1 + u 2 + … + u n , n → ∞ , 则 n ⋅ u m i n ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x 2. ∑ i = 1 n u i = u 1 + u 2 + … + u n , n 为 有 限 数 , u 1 ≥ 0 , 则 1 ⋅ u m a x ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x 3. 有 提 示 定义\begin{cases}y_n\leq x_n\leq z_n(不验等号)\\ \downarrow\qquad\Downarrow\quad\ \downarrow\\ A\rightarrow A\leftarrow A\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \\ 考法\begin{cases}1.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n\to\infty,则n\cdot u_{min}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\ 2.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n为有限数,u_1\geq0,则1\cdot u_{max}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\ 3.有提示\end{cases} ynxnzn() AAA1.i=1nui=u1+u2++un,n,numini=1nuinumax2.i=1nui=u1+u2++un,n,u10,1umaxi=1nuinumax3.
[ 例 1 ] lim ⁡ n → ∞ ( 1 n 2 − 1 − 1 n 2 − 2 − 1 n 2 − 3 − … − 1 n 2 − n ) \color{maroon}[例1]\lim_{n\to\infty}(\frac{1}{\sqrt{n^2-1}}-\frac{1}{\sqrt{n^2-2}}-\frac{1}{\sqrt{n^2-3}}-\ldots-\frac{1}{\sqrt{n^2-n}})\\ [1]nlim(n21 1n22 1n23 1n2n 1)
原 式 = lim ⁡ n → ∞ [ 1 n 2 − 1 − ( 1 n 2 − 2 + 1 n 2 − 3 + … + 1 n 2 − n ) ] n − 1 n 2 − 2 &lt; ∑ i = 2 n 1 n 2 − i &lt; n − 1 n 2 − n ↓ ⇓ ↓ 1 → 1 ← 1 而 lim ⁡ n → ∞ 1 n 2 − 1 = 0 &ThickSpace; ⟹ &ThickSpace; I = 0 − 1 = − 1 原式=\lim_{n\to\infty}[\frac{1}{\sqrt{n^2-1}}-(\frac{1}{\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-3}}+\ldots+\frac{1}{\sqrt{n^2-n}})]\\ \frac{n-1}{\sqrt{n^2-2}}&lt;\sum_{i=2}^n\frac{1}{\sqrt{n^2-i}}&lt;\frac{n-1}{\sqrt{n^2-n}}\\ \downarrow\qquad\quad\qquad\Downarrow \qquad\qquad\quad \downarrow\\ 1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\ 而\lim_{n\to\infty}\frac{1}{\sqrt{n^2-1}}=0\implies I=0-1=-1 =nlim[n21 1(n22 1+n23 1++n2n 1)]n22 n1<i=2nn2i 1<n2n n1111nlimn21 1=0I=01=1
[ 例 2 ] 求 f ( x ) = lim ⁡ n → ∞ 1 + x n + ( x 2 2 ) n n , x ≥ 0 \color{maroon}[例2]求f(x)=\lim_{n\to\infty}\sqrt[n]{1+x^n+(\frac{x^2}2)^n},x\geq0\\ [2]f(x)=nlimn1+xn+(2x2)n ,x0
[ 分 析 ] 1. x ∈ [ 0 , 1 ) &ThickSpace; ⟹ &ThickSpace; 1 n 最 大 , 1 ⋅ 1 n n &lt; 1 + x n + ( x 2 2 ) n n &lt; 3 ⋅ 1 n n ↓ ⇓ ↓ 1 → 1 ← 1 2. x ∈ [ 1 , 2 ) &ThickSpace; ⟹ &ThickSpace; x n 最 大 3. x ∈ [ 2 , + ∞ ) &ThickSpace; ⟹ &ThickSpace; ( x 2 2 ) 最 大         f ( x ) = { 1 , x ∈ [ 0 , 1 ) x , x ∈ [ 1 , 2 ) x 2 2 , x ∈ [ 2 , + ∞ ) [ 注 ] lim ⁡ ∘ → ∞ ∘ n + ∘ n + ∘ n n , ∘ i ≥ 0 , 有 f ( x ) = { f 1 , x ∈ I 1 f 2 , x ∈ I 2 f 3 , x ∈ I 3 [分析]1.x\in[0,1)\implies1^n最大,\sqrt[n]{1\cdot1^n}&lt;\sqrt[n]{1+x^n+(\frac{x^2}2)^n}&lt;\sqrt[n]{3\cdot1^n}\\ \qquad\qquad\qquad\qquad\qquad\qquad\downarrow\qquad\quad\qquad\qquad\Downarrow \qquad\qquad\quad \downarrow\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\ 2.x\in[1,2)\implies x^n最大\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\\ 3.x\in[2,+\infty)\implies(\frac{x^2}2)最大\qquad\ \ \ \ \ \ \ \quad\qquad\qquad\qquad\qquad\\ f(x)=\begin{cases}1,x\in[0,1)\\x,x\in[1,2)\\\frac{x^2}2,x\in[2,+\infty)\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [注]\lim_{\circ\to\infty}\sqrt[n]{\circ^n+\circ^n+\circ^n},\circ_i\geq0,有f(x)=\begin{cases}f_1,x\in I_1\\f_2,x\in I_2\\f_3,x\in I_3\end{cases} []1.x[0,1)1nn11n <n1+xn+(2x2)n <n31n 1112.x[1,2)xn3.x[2,+)(2x2)       f(x)=1,x[0,1)x,x[1,2)2x2,x[2,+)[]limnn+n+n ,i0,f(x)=f1,xI1f2,xI2f3,xI3
在这里插入图片描述 [ 例 3 ] ( Ⅰ ) 设 f ( x ) = x 2 , f [ ϕ ( x ) ] = − x 2 + 2 x + 3 , 且 ϕ ( x ) ≥ 0 , 求 ϕ ( x ) 及 其 定 义 域 与 值 域 ( Ⅱ ) 求 lim ⁡ n → ∞ 2020 n n + ϕ ( x ) \color{maroon}[例3](Ⅰ)设f(x)=x^2,f[\phi(x)]=-x^2+2x+3,且\phi(x)\geq0,求\phi(x)及其定义域与值域\\ \color{maroon}(Ⅱ)求\lim_{n\to\infty}\frac{2020n}{n+\phi (x)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ [3]()f(x)=x2,f[ϕ(x)]=x2+2x+3,ϕ(x)0,ϕ(x)()nlimn+ϕ(x)2020n
[ 分 析 ] ( Ⅰ ) f [ ϕ ( x ) ] = ϕ 2 ( x ) = − x 2 + 2 x + 3 , ∵ ϕ ( x ) ≥ 0 ∴ ϕ ( x ) = − x 2 + 2 x + 3 ∴ 定 义 域 为 x ∈ [ − 1 , 3 ] , 值 域 为 [ 0 , 2 ] ( Ⅱ ) 2020 n n + 2 ≤ 2020 n n + ϕ ( x ) ≤ 2020 n n = 2020 [分析](Ⅰ)f[\phi(x)]=\phi^2(x)=-x^2+2x+3,\because\phi(x)\geq0\therefore\phi(x)=\sqrt{-x^2+2x+3}\\ \therefore定义域为x\in[-1,3],值域为[0,2]\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ (Ⅱ)\frac{2020n}{n+2}\leq\frac{2020n}{n+\phi(x)}\leq\frac{2020n}{n}=2020\qquad\qquad\qquad\qquad\qquad\qquad []()f[ϕ(x)]=ϕ2(x)=x2+2x+3,ϕ(x)0ϕ(x)=x2+2x+3 x[1,3],[0,2]()n+22020nn+ϕ(x)2020nn2020n=2020

定积分定义法

定义

很早人们就发现了一个矩形的面积是 底 ∗ 高 底*高 ,而一个边为曲线的图形呢?
在这里插入图片描述
黎曼(1826-1866)发现,将这种图形任意分割成n份,就可以粗略的看到一个个小矩形。
在这里插入图片描述
随着分割地越来越多,矩形也就变的越来越细。
在这里插入图片描述
一个矩形的面积是可以求得的,那么当这些矩形无限细的时候就可以通过求他们的面积和来得到曲边图形的面积,由于是黎曼最早提出的,定积分也叫做黎曼积分。
在这里插入图片描述
1. [ a , b ] n 等 分 , 每 段 长 度 为 b − a n 2. 取 右 端 点 的 高 → f ( a + b − a n i ) ∴ lim ⁡ n → ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n = ∫ a b f ( x ) d x [ 小 结 ] 1. lim ⁡ x → ∞ ∑ i = 1 n = lim ⁡ x → ∞ ∑ i = 0 n − 1 ( 区 别 是 前 者 取 右 端 点 , 后 者 取 左 端 点 ) 2. lim ⁡ x → ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n = ∫ a b f ( x ) d x 3. lim ⁡ x → ∞ ∑ i = 1 n f ( 0 + 1 − 0 n i ) 1 − 0 n = ∫ 0 1 f ( x ) d x 4. lim ⁡ x → ∞ ∑ i = 1 n f ( 0 + x − 0 n i ) x − 0 n = ∫ 0 x f ( x ) d x 1.[a,b]n等分,每段长度为\frac{b-a}{n}\qquad\qquad\qquad\qquad\\ 2.取右端点的高\rightarrow f(a+\frac{b-a}{n}i)\qquad\qquad\qquad\qquad\\ \color{teal}\therefore \lim_{n\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\\ \color{red}{[小结]}\qquad\qquad\\1.\lim_{x\to\infty}\sum_{i=1}^n=\lim_{x\to\infty}\sum_{i=0}^{n-1}(区别是前者取右端点,后者取左端点)\\ 2.\lim_{x\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\qquad\\ 3.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)dx\qquad\qquad\qquad\\ 4.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx\qquad\qquad\qquad\\ 1.[a,b]nnba2.f(a+nbai)nlimi=1nf(a+nbai)nba=abf(x)dx[]1.xlimi=1n=xlimi=0n12.xlimi=1nf(a+nbai)nba=abf(x)dx3.xlimi=1nf(0+n10i)n10=01f(x)dx4.xlimi=1nf(0+nx0i)nx0=0xf(x)dx
例题
在这里插入图片描述 [ 例 1 ] 求 lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + … + 1 n + n ) [ 分 析 ] 通 式 = lim ⁡ n → ∞ ∑ i = 1 n 1 n + i = lim ⁡ n → ∞ ∑ i = 1 n 1 1 + 1 n ⋅ 1 n = ∫ 0 1 1 1 + x d x = ln ⁡ 2 对 比 : lim ⁡ n → ∞ ( n n 2 + 1 + n n 2 + 2 + … + n n 2 + n ) , 其 通 式 为 lim ⁡ n → ∞ ∑ i = 1 n n n 2 + i = lim ⁡ n → ∞ ∑ i = 1 n n 2 n 2 + i ⋅ 1 n 应 该 用 夹 逼 法 则 , n 2 n 2 + n &lt; ∑ i = 1 n n n 2 + i &lt; n 2 n 2 + 1 [ 例 2 ] 求 lim ⁡ n → ∞ ( n + 1 n 2 + 1 + n + 2 n 2 + 4 + n + 3 n 2 + 9 + … + n + n n 2 + n 2 ) [ 分 析 ] 通 式 = lim ⁡ n → ∞ ∑ i = 1 n n + i n 2 + i 2 = lim ⁡ n → ∞ ∑ i = 1 n n 2 + n i n 2 + i 2 ⋅ 1 n = lim ⁡ n → ∞ ∑ i = 1 n 1 + ( i n ) 1 + ( 1 n ) 2 ⋅ 1 n = ∫ 0 1 1 + x 1 − x d x = 4 π + 1 2 ln ⁡ 2 [ 例 3 ] 求 lim ⁡ n → ∞ ( 1 n 2 + n + 1 n 2 + 2 n + … + 1 n 2 + n 2 ) [ 分 析 ] 通 式 = lim ⁡ n → ∞ ∑ i = 1 n 1 n 2 + i n = lim ⁡ n → ∞ ∑ i = 1 n 1 1 + i n ⋅ 1 n = ∫ 0 1 1 1 + x d x = 2 2 − 2 [ 例 4 ] 已 知 f ( x ) = a x 3 , a &gt; 0 且 a ̸ = 1 , 计 算 lim ⁡ n → ∞ 1 n 4 ln ⁡ [ f ( 1 ) f ( 2 ) … f ( a ) ] [ 分 析 ] 原 式 = lim ⁡ n → ∞ 1 n 4 ln ⁡ ( a 1 3 ⋅ a 2 3 ⋅ … ⋅ a n 3 ) = lim ⁡ n → ∞ 1 n 4 ( 1 3 ln ⁡ a + 2 3 ln ⁡ a + … + n 3 ln ⁡ a ) = ln ⁡ a lim ⁡ n → ∞ ∑ i = 1 n i 3 n 4 = ln ⁡ a lim ⁡ n → ∞ ∑ i = 1 n ( i n ) 3 ⋅ 1 n = ln ⁡ a ⋅ ∫ 0 1 x 3 d x = 1 4 ln ⁡ a \color{maroon}[例1]求\lim_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+\frac{1}{n}}\cdot\frac1n=\int_0^1\frac{1}{1+x}dx=\ln{2}\\ \color{grey}对比:\lim_{n\to\infty}(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}),其通式为\lim_{n\to\infty}\sum_{i=1}^n\frac{n}{n^2+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2}{n^2+i}\cdot\frac1n\\ \color{grey}应该用夹逼法则,\frac{n^2}{n^2+n}&lt;\sum_{i=1}^n\frac{n}{n^2+i}&lt;\frac{n^2}{n^2+1}\\ \color{maroon}[例2]求\lim_{n\to\infty}(\frac{n+1}{n^2+1}+\frac{n+2}{n^2+4}+\frac{n+3}{n^2+9}+\ldots+\frac{n+n}{n^2+n^2})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{n+i}{n^2+i^2}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2+ni}{n^2+i^2}\cdot\frac1n=\lim_{n\to\infty}\sum_{i=1}^n\frac{1+(\frac in)}{1+(\frac1n)^2}\cdot\frac1n=\int_0^1\frac{1+x}{1-x}dx=\frac4\pi+\frac12\ln2\\ \color{maroon}[例3]求\lim_{n\to\infty}(\frac{1}{\sqrt{n^2+n}}+\frac{1}{\sqrt{n^2+2n}}+\ldots+\frac{1}{\sqrt{n^2+n^2}})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{n^2+in}}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{1+\frac in}}\cdot\frac1n=\int_0^1\frac{1}{\sqrt{1+x}}dx=2\sqrt2-2\\ \color{maroon}[例4]已知f(x)=a^{x^3},a&gt;0且a\not=1,计算\lim_{n\to\infty}\frac{1}{n^4}\ln[f(1)f(2)\ldots f(a)]\\ \color{black}[分析]原式=\lim_{n\to\infty}\frac{1}{n^4}\ln(a^{1^3}\cdot a^{2^3}\cdot \ldots \cdot a^{n^3})=\lim_{n\to\infty}\frac{1}{n^4}(1^3\ln a+2^3\ln a+\ldots+n^3\ln a)\\=\ln a\lim_{n\to\infty}\sum_{i=1}^n\frac{i^3}{n^4}=\ln a\lim_{n\to\infty}\sum_{i=1}^n(\frac in)^3\cdot \frac1n=\ln a\cdot\int_0^1x^3dx=\frac14\ln a [1]nlim(n+11+n+21++n+n1)[]=nlimi=1nn+i1=nlimi=1n1+n11n1=011+x1dx=ln2:nlim(n2+1n+n2+2n++n2+nn),nlimi=1nn2+in=nlimi=1nn2+in2n1n2+nn2<i=1nn2+in<n2+1n2[2]nlim(n2+1n+1+n2+4n+2+n2+9n+3++n2+n2n+n)[]=nlimi=1nn2+i2n+i=nlimi=1nn2+i2n2+nin1=nlimi=1n1+(n1)21+(ni)n1=011x1+xdx=π4+21ln2[3]nlim(n2+n 1+n2+2n 1++n2+n2 1)[]=nlimi=1nn2+in 1=nlimi=1n1+ni 1n1=011+x 1dx=22 2[4]f(x)=ax3,a>0a̸=1,nlimn41ln[f(1)f(2)f(a)][]=nlimn41ln(a13a23an3)=nlimn41(13lna+23lna++n3lna)=lnanlimi=1nn4i3=lnanlimi=1n(ni)3n1=lna01x3dx=41lna
[ 小 结 ] 能 直 接 凑 出 i n 的 基 本 形 { 1. n + i   ( a n + b i ) 2. n 2 + i 2 3. n 2 + n i 4. i n \color{red}[小结]\\ 能直接凑出\frac in的基本形\begin{cases}1.n+i\ (an+bi)\\2.n^2+i^2\\3.n^2+ni\\4.\frac in \end{cases} []ni1.n+i (an+bi)2.n2+i23.n2+ni4.ni
[ 例 5 ] 求 lim ⁡ n → ∞ ( 1 n + 1 n + 1 n + 1 + 1 n + 1 n + 4 + 1 n + … + 1 n + ( n − 1 ) 2 + 1 n ) [ 分 析 ] 记 x n = ∑ i = 0 n − 1 1 n + i 2 + 1 n = ∑ i = 0 n − 1 1 1 + i 2 + 1 n 2 ⋅ 1 n ∵ i 2 &lt; i 2 + 1 &lt; ( i + 1 ) 2 ∴ ∑ i = 0 n − 1 1 1 + ( i + 1 n ) 2 ⋅ 1 n &lt; x n &lt; ∑ i = 0 n − 1 1 1 + ( i n ) 2 ⋅ 1 n ∵ ∑ i = 0 n − 1 1 1 + ( i + 1 n ) 2 ⋅ 1 n = ∑ i = 1 n 1 1 + ( i n ) 2 ⋅ 1 n ∴ 两 边 放 缩 , 得 : ∫ 0 1 1 1 + x 2 d x = 4 π [ 小 结 ] 放 缩 法 ( 凑 不 出 i n ) { 1. 夹 逼 法 则 , 如 lim ⁡ n → ∞ n n 2 + 1 + n n 2 + 2 + … + n n 2 + n = 1 2. 放 缩 后 再 凑 i n , 如 上 例 \color{maroon}[例5]求\lim_{n\to\infty}(\frac{1}{n+\frac1n}+\frac{1}{n+\frac{1+1}{n}}+\frac{1}{n+\frac{4+1}{n}}+\ldots+\frac{1}{n+\frac{(n-1)^2+1}{n}})\\ \color{black}[分析]记x_n=\sum_{i=0}^{n-1}\frac{1}{n+\frac{i^2+1}{n}}=\sum_{i=0}^{n-1}\frac{1}{1+\frac{i^2+1}{n^2}}\cdot\frac1n\\ \because i^2&lt;i^2+1&lt;(i+1)^2\\ \therefore \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n&lt;x_n&lt;\sum_{i=0}^{n-1}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\ \because \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n=\sum_{i=1}^{n}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\ \therefore 两边放缩,得:\int_0^1\frac{1}{1+x^2}dx=\frac4\pi\\ \color{red}[小结]\\ 放缩法(凑不出\frac in)\begin{cases}1.夹逼法则,如\lim_{n\to\infty}\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}=1\\2.放缩后再凑\frac in,如上例 \end{cases} [5]nlim(n+n11+n+n1+11+n+n4+11++n+n(n1)2+11)[]xn=i=0n1n+ni2+11=i=0n11+n2i2+11n1i2<i2+1<(i+1)2i=0n11+(ni+1)21n1<xn<i=0n11+(ni)21n1i=0n11+(ni+1)21n1=i=1n1+(ni)21n1011+x21dx=π4[]ni{1.limnn2+1n+n2+2n++n2+nn=12.ni
[ 例 6 ] 求 lim ⁡ n → ∞ ( x n + x + x n + 2 x + … + x n + n x ) , x &gt; 0 解 : lim ⁡ n → ∞ ∑ i = 1 n x n + x ⋅ i = lim ⁡ n → ∞ ∑ i = 1 n 1 1 + x ⋅ i n ⋅ x n = ∫ 0 x 1 1 + t d t = ln ⁡ ( 1 + x ) [ 例 7 ] 求 lim ⁡ n → ∞ ( s i n x n + s i n 2 x n + … + s i n x ) x n , x &gt; 0 解 : lim ⁡ n → ∞ ∑ i = 1 n s i n x i n ⋅ x n = ∫ 0 x s i n t d t = 1 − c o s x [ 小 结 ] 变 量 形 : lim ⁡ x → ∞ ∑ i = 1 n f ( 0 + x − 0 n i ) x − 0 n = ∫ 0 x f ( x ) d x \color{maroon}[例6]求\lim_{n\to\infty}(\frac{x}{n+x}+\frac{x}{n+2x}+\ldots+\frac{x}{n+nx}),x&gt;0\\ \color{black}解:\lim_{n\to\infty}\sum_{i=1}^n\frac{x}{n+x\cdot i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+x\cdot \frac in}\cdot\frac xn=\int_0^x\frac{1}{1+t}dt=\ln(1+x)\\ \color{maroon}[例7]求\lim_{n\to\infty}(sin\frac xn+sin\frac{2x}{n}+\ldots+sinx)\frac xn,x&gt;0\\ \color{black}解:\lim_{n\to\infty}\sum_{i=1}^nsin\frac{xi}{n}\cdot\frac xn=\int_0^xsintdt=1-cosx\\ \color{red}[小结]\\ 变量形:\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx [6]nlim(n+xx+n+2xx++n+nxx),x>0nlimi=1nn+xix=nlimi=1n1+xni1nx=0x1+t1dt=ln(1+x)[7]nlim(sinnx+sinn2x++sinx)nx,x>0nlimi=1nsinnxinx=0xsintdt=1cosx[]xlimi=1nf(0+nx0i)nx0=0xf(x)dx

  • 15
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值