文章目录
一元函数微分学
导数\微分定义及其考法
定义
导数定义
假 设 一 个 普 通 教 室 在 t = 9 : 00 时 为 u = 2 0 ∘ C , t ˇ = 9 : 05 时 教 室 的 温 度 u ˇ = 2 5 ∘ C 问 教 室 里 的 温 度 在 这 5 m i n 中 的 平 均 变 化 率 是 多 少 ? 很 明 显 Δ u Δ t = 1 ∘ C / m i n , 但 是 把 时 间 变 成 今 天 与 一 年 前 的 今 天 , 温 度 相 同 都 是 2 0 ∘ C 用 刚 才 的 方 法 来 算 其 平 均 变 化 率 就 成 了 0 , 很 显 然 这 个 结 果 不 能 描 述 实 际 情 况 如 果 我 们 令 Δ t → 0 , 我 们 就 能 求 某 时 刻 的 瞬 时 变 化 率 , 如 下 : f ′ ( x ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x 瞬 时 变 化 率 [ 注 1 ] 换 元 , 令 x 0 + Δ x = x , 则 f ′ ( x 0 ) = lim Δ x → x 0 f ( x ) − f ( x 0 ) x − x 0 [ 注 2 ] 左 右 导 数 , f + ′ ( x ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x 右 导 数 , f − ′ ( x ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x 左 导 数 [ 注 3 ] 导 数 存 在 的 条 件 , f ′ ( x 0 ) ∃    ⟺    f + ′ ( x 0 ) = f − ′ ( x 0 ) \begin{aligned} &假设一个普通教室在t=9:00时为u=20^\circ C,\check t=9:05时教室的温度\check u=25^\circ C\\ &问教室里的温度在这5min中的平均变化率是多少?\\ &很明显\frac{\Delta u}{\Delta t}=1^\circ C/min,但是把时间变成今天与一年前的今天,温度相同都是20^\circ C\\ &用刚才的方法来算其平均变化率就成了0,很显然这个结果不能描述实际情况\\ &如果我们令\Delta t\to0,我们就能求某时刻的瞬时变化率,如下:\\ &\color{red}{f'(x)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\ \ 瞬时变化率}\\ &\color{grey}[注1]换元,令x_0+\Delta x=x,则f'(x_0)=\lim_{\Delta x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\\ &\color{grey}[注2]左右导数,f_+'(x)=\lim_{\Delta x\to0^+}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}右导数,f_-'(x)=\lim_{\Delta x\to0_-}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}左导数\\ &\color{grey}[注3]导数存在的条件,f'(x_0)\exists\iff f'_+(x_0)=f'_-(x_0) \end{aligned} 假设一个普通教室在t=9:00时为u=20∘C,tˇ=9:05时教室的温度uˇ=25∘C问教室里的温度在这5min中的平均变化率是多少?很明显ΔtΔu=1∘C/min,但是把时间变成今天与一年前的今天,温度相同都是20∘C用刚才的方法来算其平均变化率就成了0,很显然这个结果不能描述实际情况如果我们令Δt→0,我们就能求某时刻的瞬时变化率,如下:f′(x)=Δx→0limΔxf(x0+Δx)−f(x0) 瞬时变化率[注1]换元,令x0+Δx=x,则f′(x0)=Δx→x0limx−x0f(x)−f(x0)[注2]左右导数,f+′(x)=Δx→0+limΔxf(x0+Δx)−f(x0)右导数,f−′(x)=Δx→0−limΔxf(x0+Δx)−f(x0)左导数[注3]导数存在的条件,f′(x0)∃⟺f+′(x0)=f−′(x0)
微分定义
幂 的 微 分 { d ( x 2 ) = 2 x d x d ( x n ) = n x n − 1 d x 微 分 的 幂 { d x 2 = ( d x ) 2 d x n = ( d x ) n d y = y ′ d x \begin{aligned} &幂的微分\begin{cases}d(x^2)=2xdx\\d(x^n)=nx^{n-1}dx\end{cases}\\ &微分的幂\begin{cases}dx^2=(dx)^2\\dx^n=(dx)^n\end{cases}\\ &dy=y'dx \end{aligned} 幂的微分{d(x2)=2xdxd(xn)=nxn−1dx微分的幂{dx2=(dx)2dxn=(dx)ndy=y′dx
[外链图片转存失败(img-bCNaeZ06-1562482602646)(D:\文字\公众号\考研\数学\张宇高数十八讲\4.一元函数微分\图.png)]
如
上
图
所
示
,
f
(
x
)
=
x
2
f
(
x
+
Δ
x
)
=
(
x
+
Δ
x
)
2
=
x
2
+
2
x
Δ
x
+
(
Δ
x
)
2
令
Δ
y
=
f
(
x
+
Δ
x
)
−
f
(
x
)
=
2
x
Δ
x
+
(
Δ
x
)
2
Δ
y
=
y
′
(
x
)
⋅
Δ
x
+
∘
(
Δ
x
)
,
则
y
′
(
x
)
⋅
Δ
x
=
d
y
称
为
线
性
全
部
∴
Δ
x
=
1
⋅
Δ
x
+
0
  
⟹
  
d
x
=
Δ
x
  
⟹
  
d
y
=
y
′
(
x
)
d
x
  
⟹
  
d
y
d
x
=
y
′
(
x
)
\begin{aligned} &如上图所示,f(x)=x^2\quad f(x+\Delta x)=(x+\Delta x)^2=x^2+2x\Delta x+(\Delta x)^2\\ &令\Delta y=f(x+\Delta x)-f(x)=2x\Delta x+(\Delta x)^2\\ &\Delta y=y'(x)\cdot\Delta x+\circ(\Delta x),则y'(x)\cdot\Delta x=dy称为线性全部\\ &\therefore \Delta x=1\cdot\Delta x+0\implies dx=\Delta x\\ &\implies dy=y'(x)dx\implies \frac{dy}{dx}=y'(x)\\ \end{aligned}
如上图所示,f(x)=x2f(x+Δx)=(x+Δx)2=x2+2xΔx+(Δx)2令Δy=f(x+Δx)−f(x)=2xΔx+(Δx)2Δy=y′(x)⋅Δx+∘(Δx),则y′(x)⋅Δx=dy称为线性全部∴Δx=1⋅Δx+0⟹dx=Δx⟹dy=y′(x)dx⟹dxdy=y′(x)
[ 例 1 ] 设 y = e x 2 , 求 d y d x , d y d ( x 2 ) , d 2 y d x 2 d y d x = y ′ = e x 2 ⋅ 2 x d 2 y d x 2 = y ′ ′ = e x 2 ⋅ 4 x 2 + e x 2 ⋅ 2 d y d ( x 2 ) = e x 2 ⋅ 2 x d x 2 x d x = e x 2 d y 2 x d x = 1 2 x ⋅ e x 2 ⋅ 2 x = e x 2 [ 例 2 ] y = f ( x ) , f ′ ( x 0 ) = 1 2 , Δ x → 0 时 , y = f ( x ) 在 x = x 0 处 得 微 分 d y 与 Δ x 是 ( 同 阶 非 等 价 ) d y = y ′ ( x 0 ) d x = 1 2 d x = 1 2 Δ x lim Δ x → 0 d x Δ x = lim Δ x → 0 1 2 Δ x Δ x = 1 2 [ 例 3 ] 设 f ( x ) = ( cos x − 4 ) sin x + 3 x , 求 d f ( x ) d ( x 2 ) d f ( a ) = f ′ ( x ) d x = ( − sin 2 x + ( cos x − 4 ) ⋅ cos x + 3 ) d x d ( x 2 ) = 2 x d x ∴ d f ( x ) d ( x 2 ) = − sin 2 x + ( cos x − 4 ) cos x + 3 2 x = ( cos x − 1 ) 2 x [ 例 4 ] 设 f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , 求 证 : 在 x = 0 处 , 有 d 2 d x 2 f ( x 2 ) = d 2 d x 2 f 2 ( x ) y 1 ′ = f ′ ( x 2 ) ⋅ 2 x , y 1 ′ ′ ∣ 0 = f ′ ′ ( x 2 ) ⋅ 2 x ⋅ 2 x + f ′ ( x 2 ) ⋅ 2 ∣ x = 0 = 2 y 2 ′ = 2 f ( x ) ⋅ f ′ ( x ) , y 2 ′ ′ ∣ 0 = 2 f ′ ( x ) f ′ ( x ) + 2 f ( x ) f ′ ′ ( x ) ∣ x = 0 = 2 \begin{aligned} \ [例1]&\color{maroon}设y=e^{x^2},求\frac{dy}{dx},\frac{dy}{d(x^2)},\frac{d^2y}{dx^2}\\ &\frac{dy}{dx}=y'=e^{x^2}\cdot2x\\ &\frac{d^2y}{dx^2}=y^{''}=e^{x^2}\cdot4x^2+e^{x^2}\cdot2\\ &\frac{dy}{d(x^2)}=\frac{e^{x^2}\cdot2xdx}{2xdx}=e^{x^2}\qquad\frac{dy}{2xdx}=\frac1{2x}\cdot e^{x^2}\cdot2x=e^{x^2}\\ [例2]&\color{maroon}y=f(x),f'(x_0)=\frac12,\Delta x\to0时,y=f(x)在x=x_0处得微分dy与\Delta x是(同阶非等价)\\ &dy=y'(x_0)dx=\frac12dx=\frac12\Delta x\\ &\lim_{\Delta x\to0}\frac{dx}{\Delta x}=\lim_{\Delta x\to0}\frac{\frac12\Delta x}{\Delta x}=\frac12\\ [例3]&\color{maroon}设f(x)=(\cos x-4)\sin x+3x,求\frac{df(x)}{d(x^2)}\\ &df(a)=f'(x)dx=(-\sin^2x+(\cos x-4)\cdot\cos x+3)dx\\ &d(x^2)=2xdx\\ \therefore & \frac{df(x)}{d(x^2)}=\frac{-\sin^2x+(\cos x-4)\cos x+3}{2x}=\frac{(\cos x-1)^2}{x}\\ [例4]&\color{maroon}设f'(0)=1,f''(0)=0,求证:在x=0处,有\frac{d^2}{dx^2}f(x^2)=\frac{d^2}{dx^2}f^2(x)\\ &y_1'=f'(x^2)\cdot2x,y_1^{''}|_0=f''(x^2)\cdot2x\cdot2x+f'(x^2)\cdot2|_{x=0}=2\\ &y_2'=2f(x)\cdot f'(x),y_2^{''}|_0=2f'(x)f'(x)+2f(x)f''(x)|_{x=0}=2\\ \end{aligned} [例1][例2][例3]∴[例4]设y=ex2,求dxdy,d(x2)dy,dx2d2ydxdy=y′=ex2⋅2xdx2d2y=y′′=ex2⋅4x2+ex2⋅2d(x2)dy=2xdxex2⋅2xdx=ex22xdxdy=2x1⋅ex2⋅2x=ex2y=f(x),f′(x0)=21,Δx→0时,y=f(x)在x=x0处得微分dy与Δx是(同阶非等价)dy=y′(x0)dx=21dx=21ΔxΔx→0limΔxdx=Δx→0limΔx21Δx=21设f(x)=(cosx−4)sinx+3x,求d(x2)df(x)df(a)=f′(x)dx=(−sin2x+(cosx−4)⋅cosx+3)dxd(x2)=2xdxd(x2)df(x)=2x−sin2x+(cosx−4)cosx+3=x(cosx−1)2设f′(0)=1,f′′(0)=0,求证:在x=0处,有dx2d2f(x2)=dx2d2f2(x)y1′=f′(x2)⋅2x,y1′′∣0=f′′(x2)⋅2x⋅2x+f′(x2)⋅2∣x=0=2y2′=2f(x)⋅f′(x),y2′′∣0=2f′(x)f′(x)+2f(x)f′′(x)∣x=0=2
考法
抽象函数在一点(泛指x与特指x)
[ 例 1 ] 证 明 : 若 f ( x ) 可 导 且 为 偶 函 数 , 请 推 f ′ ( x ) 为 奇 函 数 [ 分 析 ] 已 知 f ( x ) = f ( − x ) ∴ f ′ ( − x ) = lim Δ x → 0 f ( − x + Δ x ) − f ( − x ) Δ x = − lim − Δ x → 0 f ( x + ( − Δ x ) ) − f ( x ) − Δ x = − f ′ ( x ) [ 例 2 ] 证 明 f ( x ) 可 导 , 周 期 为 T , 请 推 f ′ ( x ) 的 周 期 也 是 T [ 分 析 ] 已 知 f ( x + T ) = f ( x ) ∴ f ′ ( x + T ) = lim Δ x → 0 f ( x + T + Δ x ) − f ( x + T ) Δ x = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = f ′ ( x ) [ 例 3 ] f ( x ) 二 阶 可 导 , T = 2 , 奇 函 数 , 且 f ( 1 2 ) > 0 , f ′ ( x ) > 0 , 比 较 f ( − 1 2 ) , f ′ ( 3 2 ) , f ′ ′ ( 0 ) 的 大 小 ∵ 该 函 数 为 奇 函 数 ∴ f ( − x ) = − f ( x ) → f ( − 1 2 ) = − f ( 1 2 ) < 0 ∵ f ( x ) : T = 2 ∴ f ′ ( x ) : T = 2 且 f ′ ( x ) 为 偶 函 数 ∴ f ′ ( 3 2 ) = f ′ ( 3 2 − 2 ) = f ′ ( − 1 2 ) = f ′ ( 1 2 ) > 0 ∴ f ′ ′ ( x ) 为 奇 函 数 即 : f ′ ′ ( 0 ) = 0 得 f ( − 1 2 ) < f ′ ′ ( 0 ) < f ′ ( 3 2 ) [ 例 4 ] y = f ( x ) 与 y = ∫ 0 arctan x e − t 2 d t 在 ( 0 , 0 ) 处 切 线 相 同 , 写 出 切 线 方 程 , 求 lim n → ∞ n f ( 2 n ) [ 分 析 ] f ′ ( x 0 ) = k , 切 线 方 程 为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) ( ∫ 0 arctan x e − t 2 d t ) x ′ = e − ( arctan x ) 2 ⋅ 1 1 + x 2 , 令 x = 0 , 则 f ′ ( 0 ) = 1 , 故 切 线 方 程 为 y = x ∴ lim n → ∞ n f ( 2 n ) = 2 lim 2 n → 0 + f ( 0 + 2 n ) − f ( 0 ) 2 n = 2 ⋅ f ′ ( 0 ) = 2 [ 例 5 ] 设 f ′ ( 1 ) = 1 , 则 lim x → 1 f ( x ) − f ( 1 ) x 10 − 1 = ‾ a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) I = lim x → 1 f ( x ) − f ( 1 ) ( x − 1 ) ( x 9 + x 8 + ⋯ + x + 1 ) = f ′ ( 1 ) ⋅ 1 10 = 1 10 [ 注 ] f ′ ( x ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x [ 例 6 ] 设 f ( x ) 在 ( − ∞ , + ∞ ) 内 有 定 义 ( 存 在 ) 且 ∀ x , x 1 , x 2 ∈ ( − ∞ , + ∞ ) , 有 f ( x 1 + x 2 ) = f ( x 1 ) ⋅ f ( x 2 ) , f ( x ) = 1 + x g ( x ) , lim x → 0 g ( x ) = 1 , 证 明 f ( x ) 在 ( − ∞ , + ∞ ) 内 处 处 可 导 f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 f ( x ) ⋅ f ( Δ x ) − f ( x ) Δ x = f ( x ) lim Δ x → 0 f ( Δ x ) − 1 Δ x = f ( x ) lim Δ x → 0 1 + Δ x g ( Δ x ) − 1 Δ x = f ( x )    ⟹    f ′ ( x ) 处 处 存 在    ⟺    f ( x ) 处 处 可 导 \begin{aligned} \ [例1]&\color{maroon}{证明:若f(x)可导且为偶函数,请推f'(x)为奇函数}\\ &\color{black}[分析]已知f(x)=f(-x)\\ &\therefore f'(-x)=\lim_{\Delta x\to0}\frac{f(-x+\Delta x)-f(-x)}{\Delta x}=-\lim_{-\Delta x\to0}\frac{f(x+(-\Delta x))-f(x)}{-\Delta x}=-f'(x)\\ [例2]&\color{maroon}{证明f(x)可导,周期为T,请推f'(x)的周期也是T}\\ &\color{black}[分析]已知f(x+T)=f(x)\\ &\therefore f'(x+T)=\lim_{\Delta x\to0}\frac{f(x+T+\Delta x)-f(x+T)}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=f'(x)\\ [例3]&\color{maroon}{f(x)二阶可导,T=2,奇函数,且f(\frac12)>0,f'(x)>0,比较f(-\frac12),f'(\frac32),f''(0)的大小}\\ &\color{black}\because该函数为奇函数\therefore f(-x)=-f(x)\rightarrow f(-\frac12)=-f(\frac12)<0\\ &\because f(x):T=2 \therefore f'(x):T=2且f'(x)为偶函数\\ &\therefore f'(\frac32)=f'(\frac32-2)=f'(-\frac12)=f'(\frac12)>0\\ &\therefore f''(x)为奇函数\quad 即:f''(0)=0\\ &得f(-\frac12)<f''(0)<f'(\frac32)\\ [例4]&\color{maroon}{y=f(x)与y=\int_0^{\arctan x}e^{-t^2}dt在(0,0)处切线相同,写出切线方程,求\lim_{n\to\infty}nf(\frac2n)}\\ &\color{black}[分析]f'(x_0)=k,切线方程为y-y_0=f'(x_0)(x-x_0)\\ &(\int_0^{\arctan x}e^{-t^2}dt)'_x=e^{-(\arctan x)^2}\cdot\frac{1}{1+x^2},令x=0,则f'(0)=1,故切线方程为y=x\\ &\therefore\lim_{n\to\infty}nf(\frac2n)=2\lim_{\frac2n\to0^+}\frac{f(0+\frac2n)-f(0)}{\frac2n}=2\cdot f'(0)=2\\ [例5]&\color{maroon}{设f'(1)=1,则\lim_{x\to1}\frac{f(x)-f(1)}{x^{10}-1}}=\underline{\quad}\\ &a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1})\\ &I=\lim_{x\to1}\frac{f(x)-f(1)}{(x-1)(x^9+x^8+\cdots+x+1)}=f'(1)\cdot\frac1{10}=\frac1{10}\\ [注]&f'(x)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ [例6]&\color{maroon}{设f(x)在(-\infty,+\infty)内有定义(存在)且\forall x,x_1,x_2\in(-\infty,+\infty),}\\ &\color{maroon}有f(x_1+x_2)=f(x_1)\cdot f(x_2),f(x)=1+xg(x),\lim_{x\to0}g(x)=1,证明f(x)在(-\infty,+\infty)内处处可导\\ &f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x)\cdot f(\Delta x)-f(x)}{\Delta x}\\ &=f(x)\lim_{\Delta x\to0}\frac{f(\Delta x)-1}{\Delta x}=f(x)\lim_{\Delta x\to0}\frac{1+\Delta xg(\Delta x)-1}{\Delta x}=f(x)\\ &\implies f'(x)处处存在\iff f(x)处处可导\\ \end{aligned} [例1][例2][例3][例4][例5][注][例6]证明:若f(x)可导且为偶函数,请推f′(x)为奇函数[分析]已知f(x)=f(−x)∴f′(−x)=Δx→0limΔxf(−x+Δx)−f(−x)=−−Δx→0lim−Δxf(x+(−Δx))−f(x)=−f′(x)证明f(x)可导,周期为T,请推f′(x)的周期也是T[分析]已知f(x+T)=f(x)∴f′(x+T)=Δx→0limΔxf(x+T+Δx)−f(x+T)=Δx→0limΔxf(x+Δx)−f(x)=f′(x)f(x)二阶可导,T=2,奇函数,且f(21)>0,f′(x)>0,比较f(−21),f′(23),f′′(0)的大小∵该函数为奇函数∴f(−x)=−f(x)→f(−21)=−f(21)<0∵f(x):T=2∴f′(x):T=2且f′(x)为偶函数∴f′(23)=f′(23−2)=f′(−21)=f′(21)>0∴f′′(x)为奇函数即:f′′(0)=0得f(−21)<f′′(0)<f′(23)y=f(x)与y=∫0arctanxe−t2dt在(0,0)处切线相同,写出切线方程,求n→∞limnf(n2)[分析]f′(x0)=k,切线方程为y−y0=f′(x0)(x−x0)(∫0arctanxe−t2dt)x′=e−(arctanx)2⋅1+x21,令x=0,则f′(0)=1,故切线方程为y=x∴n→∞limnf(n2)=2n2→0+limn2f(0+n2)−f(0)=2⋅f′(0)=2设f′(1)=1,则x→1limx10−1f(x)−f(1)=an−bn=(a−b)(an−1+an−2b+⋯+abn−2+bn−1)I=x→1lim(x−1)(x9+x8+⋯+x+1)f(x)−f(1)=f′(1)⋅101=101f′(x)=x→x0limx−x0f(x)−f(x0)=Δx→0limΔxf(x0+Δx)−f(x0)设f(x)在(−∞,+∞)内有定义(存在)且∀x,x1,x2∈(−∞,+∞),有f(x1+x2)=f(x1)⋅f(x2),f(x)=1+xg(x),x→0limg(x)=1,证明f(x)在(−∞,+∞)内处处可导f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxf(x)⋅f(Δx)−f(x)=f(x)Δx→0limΔxf(Δx)−1=f(x)Δx→0limΔx1+Δxg(Δx)−1=f(x)⟹f′(x)处处存在⟺f(x)处处可导
分段函数在分段点(常见绝对值函数)
[ 例 1 ] 设 f ( x ) 在 x = a 处 连 续 , F ( x ) = f ( x ) ⋅ ∣ x − a ∣ , 证 明 F ( x ) 在 x = a 处 可 导 的 充 要 条 件 为 f ( a ) = 0 ( 背 过 ) [ 分 析 ] F ( x ) = { − ( x − a ) f ( x ) , x < a 0 , x = a ( x − a ) f ( x ) , x > a F − ′ ( x ) = lim x → a − F ( x ) − F ( a ) x − a = lim x → a − − ( x − a ) f ( x ) − 0 x − a = − lim x → a − f ( x ) = − f ( a ) F + ′ ( x ) = lim x → a + F ( x ) − F ( a ) x − a = lim x → a + ( x − a ) f ( x ) − 0 x − a = lim x → a + f ( x ) = f ( a ) F ′ ( a ) ∃    ⟺    F − ′ ( a ) = F + ′ ( a )    ⟺    f ( a ) = 0 [ 例 2 ] 设 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ , 求 f ′ ( 0 ) , f ′ ( 1 ) f ( x ) = { − x e x − 1 , x < 0 x e x − 1 , 0 ≤ x < 1 x e 1 − x , x ≥ 1 f + ′ ( 0 ) = ( e x − 1 + x e x − 1 ) ∣ x = 0 = e − 1 , 再 求 f − ′ ( 0 ) = − e − 1 , 即 f ′ ( 0 ) 不 存 在 f ′ ( 1 ) = ( e 1 − x − x e 1 − x ) ∣ x = 1 = 1 − 1 = 0 同 理 , 得 f − ′ ( 1 ) = 2 , f + ′ ( 1 ) = 0    ⟹    f ′ ( 1 ) 不 存 在 \begin{aligned} \ [例1]&\color{maroon}{设f(x)在x=a处连续,F(x)=f(x)\cdot|x-a|,证明F(x)在x=a处可导的充要条件为f(a)=0(背过)}\\ &\color{black}[分析]F(x)=\begin{cases}-(x-a)f(x),x< a\\0,x=a\\(x-a)f(x),x>a\end{cases}\\ &F'_-(x)=\lim_{x\to a^-}\frac{F(x)-F(a)}{x-a}=\lim_{x\to a^-}\frac{-(x-a)f(x)-0}{x-a}=-\lim_{x\to a^-}f(x)=-f(a)\\ &F'_+(x)=\lim_{x\to a^+}\frac{F(x)-F(a)}{x-a}=\lim_{x\to a^+}\frac{(x-a)f(x)-0}{x-a}=\lim_{x\to a^+}f(x)=f(a)\\ &F'(a)\exists\iff F'_-(a)=F'_+(a)\iff f(a)=0\\ [例2]&\color{maroon}{设f(x)=\mid x\mid e^{-\mid x-1\mid},求f'(0),f'(1)}\\ &f(x)=\begin{cases}-xe^{x-1},x<0\\xe^{x-1},0\leq x<1\\xe^{1-x},x\geq1\end{cases}\\ &f_+'(0)=(e^{x-1}+xe^{x-1})|_{x=0}=e^{-1},再求f_{-}'(0)=-e^{-1},即f'(0)不存在\\ &f'(1)=(e^{1-x}-xe^{1-x})|_{x=1}=1-1=0\\ &同理,得f_-'(1)=2,f_+'(1)=0\implies f'(1)不存在\\ \end{aligned} [例1][例2]设f(x)在x=a处连续,F(x)=f(x)⋅∣x−a∣,证明F(x)在x=a处可导的充要条件为f(a)=0(背过)[分析]F(x)=⎩⎪⎨⎪⎧−(x−a)f(x),x<a0,x=a(x−a)f(x),x>aF−′(x)=x→a−limx−aF(x)−F(a)=x→a−limx−a−(x−a)f(x)−0=−x→a−limf(x)=−f(a)F+′(x)=x→a+limx−aF(x)−F(a)=x→a+limx−a(x−a)f(x)−0=x→a+limf(x)=f(a)F′(a)∃⟺F−′(a)=F+′(a)⟺f(a)=0设f(x)=∣x∣e−∣x−1∣,求f′(0),f′(1)f(x)=⎩⎪⎨⎪⎧−xex−1,x<0xex−1,0≤x<1xe1−x,x≥1f+′(0)=(ex−1+xex−1)∣x=0=e−1,再求f−′(0)=−e−1,即f′(0)不存在f′(1)=(e1−x−xe1−x)∣x=1=1−1=0同理,得f−′(1)=2,f+′(1)=0⟹f′(1)不存在
四则运算(不太复杂的点与不成立的点)
[ 例 1 ] f ( x ) = 2 1 + x + arcsin 1 − x 1 + x 2 , f ′ ( 1 ) = ? 设 f 1 = 2 1 + x , f 2 = arcsin 1 − x 1 + x 2 f 1 ′ ( 1 ) = 2 2 , f 2 ( 1 ) = lim x → 1 f 2 ( x ) − f 2 ( 1 ) x − 1 = lim x → 1 arcsin 1 − x 1 + x 2 − 0 x − 1 = − 1 2 故 f ′ ( 1 ) = 2 2 − 1 2 [ 例 2 ] f ( x ) = ∏ n = 1 100 ( tan π x n 4 − n ) , 则 f ′ ( 1 ) = ? f ( x ) = ( tan π x 4 − 1 ) ( tan π x 2 4 − 2 ) … ( tan π x 100 4 − 100 ) 令 g ( x ) = ( tan π x 2 4 − 2 ) … ( tan π x 100 4 − 100 )    ⟹    f ( x ) = ( tan π x 4 − 1 ) ⋅ g ( x ) f ′ ( 1 ) = π 4 sec 2 π 4 ⋅ g ( 1 ) + ( tan π 4 − 1 ) g ′ ( 1 ) = − π 2 ⋅ 99 ! [ 例 3 ] f ( x ) = e 10 x ⋅ x ( x + 1 ) ( x + 2 ) … ( x + 10 ) , 求 f ′ ( 0 ) 令 g ( x ) = e 10 x ⋅ ( x + 1 ) ( x + 2 ) … ( x + 10 ) , 则 f ( x ) = x ⋅ g ( x ) f ′ ( x ) = g ( x ) + x ⋅ g ′ ( x ) = 10 ! [ 例 4 ] f ( x ) = x 2 3 sin x , 求 f ′ ( x ) 1. x ≠ 0 时 , f ′ ( x ) = ( x 2 3 ⋅ sin x ) ′ = 2 3 x − 1 3 sin x + x 2 3 ⋅ cos x 2. x = 0 时 , f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 x 2 3 sin x x = lim x → 0 x 2 3 = 0 故 f ′ ( x ) = { 2 3 1 x 3 sin x + x 2 3 ⋅ cos x , x ≠ 0 0 , x = 0 [ 注 ] ( u , v ) ′ = u ′ v + u v ′ 需 两 者 处 处 可 导 , 而 x 2 3 并 非 处 处 可 导 \begin{aligned} &\color{maroon}{[例1]f(x)=2\sqrt{1+x}+\arcsin\frac{1-x}{1+x^2},f'(1)=?}\\ &\color{black}设f_1=2\sqrt{1+x},f_2=\arcsin\frac{1-x}{1+x^2}\\ &f'_1(1)=\frac{\sqrt2}2,f_2(1)=\lim_{x\to1}\frac{f_2(x)-f_2(1)}{x-1}=\lim_{x\to1}\frac{\arcsin\frac{1-x}{1+x^2}-0}{x-1}=-\frac12\\ &故f'(1)=\frac{\sqrt2}2-\frac12\\ &\color{maroon}{[例2]f(x)=\prod}_{n=1}^{100}(\tan\frac{\pi x^n}4-n),则f'(1)=?\\ &\color{black}f(x)=(\tan\frac{\pi x}4-1)(\tan\frac{\pi x^2}4-2)\ldots(\tan\frac{\pi x^{100}}4-100)\\ &令g(x)=(\tan\frac{\pi x^2}4-2)\ldots(\tan\frac{\pi x^{100}}4-100)\implies f(x)=(\tan\frac{\pi x}4-1)\cdot g(x)\\ &f'(1)=\frac\pi4 \sec^2\frac{\pi}4\cdot g(1)+(\tan\frac{\pi}4-1)g'(1)=-\frac\pi2\cdot99!\\ &\color{maroon}{[例3]f(x)=e^{10x}\cdot x(x+1)(x+2)\ldots(x+10),求f'(0)}\\ &\color{black}令g(x)=e^{10x}\cdot(x+1)(x+2)\ldots(x+10),则f(x)=x\cdot g(x)\\ &f'(x)=g(x)+x\cdot g'(x)=10!\\ &\color{maroon}{[例4]f(x)=\sqrt[3]{x^2}\sin x,求f'(x)}\\ &\color{black}1.x\neq0时,f'(x)=(x^{\frac23}\cdot \sin x)'=\frac23x^{-\frac13}\sin x+x^{\frac23}\cdot \cos x\\ &2.x=0时,f'(0)=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0}\frac{x^\frac23\sin x}{x}=\lim_{x\to0}x^\frac23=0\\ &故f'(x)=\begin{cases}\frac23\frac1{\sqrt[3]{x}}\sin x+x^\frac23\cdot \cos x,x\neq0\\0,x=0\end{cases}\\ &[注](u,v)'=u'v+uv'需两者处处可导,而x^{\frac23}并非处处可导\\ \end{aligned} [例1]f(x)=21+x+arcsin1+x21−x,f′(1)=?设f1=21+x,f2=arcsin1+x21−xf1′(1)=22,f2(1)=x→1limx−1f2(x)−f2(1)=x→1limx−1arcsin1+x21−x−0=−21故f′(1)=22−21[例2]f(x)=∏n=1100(tan4πxn−n),则f′(1)=?f(x)=(tan4πx−1)(tan4πx2−2)…(tan4πx100−100)令g(x)=(tan4πx2−2)…(tan4πx100−100)⟹f(x)=(tan4πx−1)⋅g(x)f′(1)=4πsec24π⋅g(1)+(tan4π−1)g′(1)=−2π⋅99![例3]f(x)=e10x⋅x(x+1)(x+2)…(x+10),求f′(0)令g(x)=e10x⋅(x+1)(x+2)…(x+10),则f(x)=x⋅g(x)f′(x)=g(x)+x⋅g′(x)=10![例4]f(x)=3x2sinx,求f′(x)1.x̸=0时,f′(x)=(x32⋅sinx)′=32x−31sinx+x32⋅cosx2.x=0时,f′(0)=x→0limx−0f(x)−f(0)=x→0limxx32sinx=x→0limx32=0故f′(x)={323x1sinx+x32⋅cosx,x̸=00,x=0[注](u,v)′=u′v+uv′需两者处处可导,而x32并非处处可导
导数计算与应用
导数计算
基本求导公式表
( x k ) ′ = k x k − 1 ( ln x ) ′ = 1 x ( ln ∣ x ∣ ) ′ = 1 x ( e x ) ′ = e x ( a x ) ′ = a x ln a , a > 0 且 ̸ = 1 ( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x = 1 cos 2 x ( cot x ) ′ = − csc 2 x ( sec x ) ′ = sec x ⋅ tan x ( csc x ) ′ = − csc x ⋅ cot x ( ln ∣ cos x ∣ ) ′ = − tan x ( ln ∣ sin x ∣ ) ′ = cot x ( ln ∣ sec x + tan x ∣ ) ′ = sec x ( ln ∣ csc x − cot x ∣ ) ′ = csc x ( arctan x ) ′ = 1 1 + x 2 ( a r c cot x ) ′ = − 1 1 + x 2 ( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( ln ( x + x 2 + a 2 ) ) ′ = 1 x 2 + a 2 常 见 a = 1 ( ln ( x − x 2 − a 2 ) ) ′ = 1 x 2 − a 2 , x > a \begin{aligned} &(x^k)'=kx^{k-1}\qquad (\ln x)'=\frac1x\qquad(\ln\mid x\mid)'=\frac1x\\ &(e^x)'=e^x\qquad (a^x)'=a^x\ln a,a>0且\not=1\\ &(\sin x)'=\cos x\qquad(\cos x)'=-\sin x\qquad(\tan x)'=\sec^2x=\frac1{\cos^2x}\\ &(\cot x)'=-\csc^2x\qquad(\sec x)'=\sec x\cdot \tan x\qquad(\csc x)'=-\csc x\cdot \cot x\\ &(\ln\mid\cos x\mid)'=-\tan x\qquad(\ln\mid\sin x\mid)'=\cot x\\ &(\ln\mid\sec x+\tan x\mid)'=\sec x\qquad(\ln\mid\csc x-\cot x\mid)'=\csc x\\ &(\arctan x)'=\frac1{1+x^2}\qquad(arc\cot x)'=-\frac1{1+x^2}\\ &(\arcsin x)'=\frac1{\sqrt{1-x^2}}\qquad(\arccos x)'=-\frac1{\sqrt{1-x^2}}\\ &(\ln(x+\sqrt{x^2+a^2}))'=\frac1{\sqrt{x^2+a^2}}常见a=1\qquad(\ln(x-\sqrt{x^2-a^2}))'=\frac1{\sqrt{x^2-a^2}},x>a\\ \end{aligned} (xk)′=kxk−1(lnx)′=x1(ln∣x∣)′=x1(ex)′=ex(ax)′=axlna,a>0且̸=1(sinx)′=cosx(cosx)′=−sinx(tanx)′=sec2x=cos2x1(cotx)′=−csc2x(secx)′=secx⋅tanx(cscx)′=−cscx⋅cotx(ln∣cosx∣)′=−tanx(ln∣sinx∣)′=cotx(ln∣secx+tanx∣)′=secx(ln∣cscx−cotx∣)′=cscx(arctanx)′=1+x21(arccotx)′=−1+x21(arcsinx)′=1−x21(arccosx)′=−1−x21(ln(x+x2+a2))′=x2+a21常见a=1(ln(x−x2−a2))′=x2−a21,x>a
复合、隐、参数、分段(含绝对值)、反函数等
[ 例 1 ] 设 f ( x ) = x 3 + 2 x − 4 , g ( x ) = f [ f ( x ) ] , 则 g ′ ( 0 ) = ‾ 一 层 一 层 剥 开 她 的 心 g ′ ( x ) = f ′ [ f ( x ) ] f ′ ( x ) f ′ ( x ) = 3 x 2 + 2 , 则 f ′ ( 0 ) = 2 , f ′ ( − 4 ) = 50 g ′ ( 0 ) = f ′ [ f ( 0 ) ] f ′ ( 0 ) = f ′ ( − 4 ) f ′ ( 0 ) = 100 [ 例 2 ] 设 y = x 3 + 3 x + 1 , 则 d x d y ∣ y = 1 = ‾ d x d y ∣ y = 1 = 1 y x ′ ∣ x = 0 = 1 3 x 2 + 3 ∣ x = 0 = 1 3 [ 例 3 ] 已 知 可 微 函 数 y = y ( x ) , 由 方 程 y = − y e x + 2 e y sin x − 7 x 所 确 定 , 求 y ′ ′ ( 0 ) y = − y e x + 2 e y sin x − 7 x    ⟹    y ′ = − y ′ e x − y e x + 2 e y sin x ⋅ y ′ + 2 e y ⋅ cos x − 7    ⟹    y ′ ′ = − y ′ ′ e x − y ′ e x − y ′ e x − y e x + 2 e y ⋅ ( y ′ ) 2 sin x + 2 e y cos x ⋅ y ′ + 2 e y sin x ⋅ y ′ ′ + 2 e y ⋅ y ′ cos x − 2 e y sin x 由 x = 0 代 入 , 分 别 得 : { y = 0 y ′ = − 5 2 y ′ ′ = − 5 2 [ 例 4 ] 设 函 数 y = y ( x ) 由 参 数 方 程 { x = 1 + t 2 y = cos t 所 确 定 求 ( 1 ) d y d x 和 d 2 y d x 2 ; ( 2 ) lim x → 1 + d y d x 和 lim x → 1 + d 2 y d x 2 ( 1 ) d y d x = y t ′ x t ′ = − sin t 2 t d 2 y d x 2 = d ( d y d x ) d x = − 1 2 ( t cos t − sin t t 2 ) 2 t = − t cos t − sin t 4 t 3 ( 2 ) lim x → 1 + − sin t 2 t = lim t → 0 − sin t 2 t = − 1 2 lim x → 1 + = lim t → 0 sin t − t cos t 4 t 3 = lim t → 0 cos t − cos t + t sin t 12 t 2 = 1 12 [ 例 5 ] 设 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ , 求 f ′ ( x ) ( 1 ) 先 写 出 f ( x ) = { − x e x − 1 , x < 0 x e x − 1 , 0 ≤ x < 1 x e 1 − x , x ≥ 1 ( 2 ) f ′ ( 0 ) 不 ∃ , f ′ ( 1 ) 不 ∃ ( 分 段 点 用 定 义 求 , 之 前 求 过 ) ( 3 ) 非 分 段 点 用 公 式 求 f ′ ( x ) = { ( − 1 − x ) e x − 1 , x < 0 ( 1 + x ) e x − 1 , 0 < x < 1 ( 1 − x ) e 1 − x , x > 1 \begin{aligned} \ [例1]&\color{maroon}设f(x)=x^3+2x-4,g(x)=f[f(x)],则g'(0)=\underline{\quad}\\ &一层一层剥开她的心\\ &g'(x)=f'[f(x)]f'(x)\\ &f'(x)=3x^2+2,则f'(0)=2,f'(-4)=50\\ &g'(0)=f'[f(0)]f'(0)=f'(-4)f'(0)=100\\ [例2]&\color{maroon}设y=x^3+3x+1,则\frac{dx}{dy}|_{y=1}=\underline{\qquad}\\ &\frac{dx}{dy}|_{y=1}=\frac1{y'_x}|_{x=0}=\frac1{3x^2+3}|_{x=0}=\frac13\\ [例3]&\color{maroon}已知可微函数y=y(x),由方程y=-ye^x+2e^y\sin x-7x所确定,求y''(0)\\ &y=-ye^x+2e^y\sin x-7x\\ &\implies y'=-y'e^x-ye^x+2e^y\sin x\cdot y'+2e^y\cdot \cos x-7\\ &\implies y''=-y''e^x-y'e^x-y'e^x-ye^x+2e^y\cdot(y')^2\sin x+\\ &2e^y\cos x\cdot y'+2e^y\sin x\cdot y''+2e^y\cdot y'\cos x-2e^y\sin x\\ &由x=0代入,分别得:\begin{cases}y=0\\y'=-\frac52\\y''=-\frac52\end{cases}\\ [例4]&\color{maroon}设函数y=y(x)由参数方程\begin{cases}x=1+t^2\\y=\cos t\end{cases}所确定\\ &\color{maroon}求(1)\frac{dy}{dx}和\frac{d^2y}{dx^2};\\ &\color{maroon}(2)\lim_{x\to1^+}\frac{dy}{dx}和\lim_{x\to1^+}\frac{d^2y}{dx^2}\\ (1)&\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{-\sin t}{2t}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{-\frac12(\frac{t\cos t-\sin t}{t^2})}{2t}=-\frac{t\cos t-\sin t}{4t^3}\\ (2)&\lim_{x\to1^+}\frac{-\sin t}{2t}=\lim_{t\to0}-\frac{\sin t}{2t}=-\frac12\\ &\lim_{x\to1^+}=\lim_{t\to0}\frac{\sin t-t\cos t}{4t^3}=\lim_{t\to0}\frac{\cos t-\cos t+t\sin t}{12t^2}=\frac1{12}\\ [例5]&\color{maroon}设f(x)=\mid x\mid e^{-\mid x-1\mid},求f'(x)\\ &(1)先写出f(x)=\begin{cases}-xe^{x-1},x<0\\xe^{x-1},0\leq x<1\\xe^{1-x},x\geq1\end{cases}\\ &(2)f'(0)不\exists,f'(1)不\exists(分段点用定义求,之前求过)\\ &(3)非分段点用公式求f'(x)=\begin{cases}(-1-x)e^{x-1},x<0\\(1+x)e^{x-1},0< x<1\\(1-x)e^{1-x},x>1\end{cases}\\ \end{aligned} [例1][例2][例3][例4](1)(2)[例5]设f(x)=x3+2x−4,g(x)=f[f(x)],则g′(0)=一层一层剥开她的心g′(x)=f′[f(x)]f′(x)f′(x)=3x2+2,则f′(0)=2,f′(−4)=50g′(0)=f′[f(0)]f′(0)=f′(−4)f′(0)=100设y=x3+3x+1,则dydx∣y=1=dydx∣y=1=yx′1∣x=0=3x2+31∣x=0=31已知可微函数y=y(x),由方程y=−yex+2eysinx−7x所确定,求y′′(0)y=−yex+2eysinx−7x⟹y′=−y′ex−yex+2eysinx⋅y′+2ey⋅cosx−7⟹y′′=−y′′ex−y′ex−y′ex−yex+2ey⋅(y′)2sinx+2eycosx⋅y′+2eysinx⋅y′′+2ey⋅y′cosx−2eysinx由x=0代入,分别得:⎩⎪⎨⎪⎧y=0y′=−25y′′=−25设函数y=y(x)由参数方程{x=1+t2y=cost所确定求(1)dxdy和dx2d2y;(2)x→1+limdxdy和x→1+limdx2d2ydxdy=xt′yt′=2t−sintdx2d2y=dxd(dxdy)=2t−21(t2tcost−sint)=−4t3tcost−sintx→1+lim2t−sint=t→0lim−2tsint=−21x→1+lim=t→0lim4t3sint−tcost=t→0lim12t2cost−cost+tsint=121设f(x)=∣x∣e−∣x−1∣,求f′(x)(1)先写出f(x)=⎩⎪⎨⎪⎧−xex−1,x<0xex−1,0≤x<1xe1−x,x≥1(2)f′(0)不∃,f′(1)不∃(分段点用定义求,之前求过)(3)非分段点用公式求f′(x)=⎩⎪⎨⎪⎧(−1−x)ex−1,x<0(1+x)ex−1,0<x<1(1−x)e1−x,x>1
[ 例 6 ] 设 y = f ( x ) 与 x = g ( y ) 互 为 反 函 数 , y = f ( x ) 可 导 且 f ′ ( x ) ̸ = 0 , f ( 3 ) = 5 , h ( x ) = f [ 1 3 g 2 ( x 2 + 3 x + 1 ) ] , 求 h ′ ( 1 ) h ′ ( x ) = f ′ [ 1 3 g 2 ( x 2 + 3 x + 1 ) ] 1 3 2 g ( x 2 + 3 x + 1 ) ⋅ g ′ ( x 2 + 3 x + 1 ) ⋅ ( 2 x + 3 ) h ′ ( 1 ) = f ′ ( 1 3 g 2 ( 5 ) ) ⋅ 2 3 g ( 5 ) ⋅ g ′ ( 5 ) ⋅ 5 由 y = f ( x ) 与 x = g ( y ) 是 反 函 数    ⟹    d y d x = f ′ ( x ) , d x d y = g ′ ( y )    ⟹    { f ′ ( x ) g ′ ( y ) = 1 f ( 3 ) = 5 , 3 = g ( 5 ) f ( x ) = y , x = g ( y )    ⟹    h ′ ( 1 ) = f ′ ( 3 ) ⋅ 2 3 g ( 5 ) ⋅ g ′ ( 5 ) ⋅ 5 = 10 [ 例 7 ] x = f ( y ) 是 函 数 y = x + ln x 的 反 函 数 , 求 d 2 f d y 2 x y ′ = 1 y x ′ , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 有 y x ′ = 1 + 1 x , y x ′ ′ = − 1 x 2 , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 = − − 1 / x 2 ( 1 + 1 x ) 3 = x ( 1 + x ) 3 \begin{aligned} \ [例6]&\color{maroon}设y=f(x)与x=g(y)互为反函数,y=f(x)可导且f'(x)\not=0,f(3)=5,h(x)=f[\frac13g^2(x^2+3x+1)],\\ &\color{maroon}求h'(1)\\ &h'(x)=f'[\frac13g^2(x^2+3x+1)]\frac132g(x^2+3x+1)\cdot g'(x^2+3x+1)\cdot(2x+3)\\ &h'(1)=f'(\frac13g^2(5))\cdot\frac23g(5)\cdot g'(5)\cdot5\\ &由y=f(x)与x=g(y)是反函数\implies\frac{dy}{dx}=f'(x),\frac{dx}{dy}=g'(y)\\ &\implies\begin{cases}f'(x)g'(y)=1\\f(3)=5,3=g(5)\\f(x)=y,x=g(y)\end{cases}\implies h'(1)=f'(3)\cdot\frac23g(5)\cdot g'(5)\cdot5=10\\ [例7]&\color{maroon}x=f(y)是函数y=x+\ln x的反函数,求\frac{d^2f}{dy^2}\\ &x'_y=\frac1y'_x,x''_y=-\frac{y''_x}{(y'_x)^3}\\ &有y'_x=1+\frac1x,y''_x=-\frac1{x^2},x''_y=-\frac{y''_x}{(y'_x)^3}=-\frac{-1/x^2}{(1+\frac1x)^3}=\frac{x}{(1+x)^3}\\ \end{aligned} [例6][例7]设y=f(x)与x=g(y)互为反函数,y=f(x)可导且f′(x)̸=0,f(3)=5,h(x)=f[31g2(x2+3x+1)],求h′(1)h′(x)=f′[31g2(x2+3x+1)]312g(x2+3x+1)⋅g′(x2+3x+1)⋅(2x+3)h′(1)=f′(31g2(5))⋅32g(5)⋅g′(5)⋅5由y=f(x)与x=g(y)是反函数⟹dxdy=f′(x),dydx=g′(y)⟹⎩⎪⎨⎪⎧f′(x)g′(y)=1f(3)=5,3=g(5)f(x)=y,x=g(y)⟹h′(1)=f′(3)⋅32g(5)⋅g′(5)⋅5=10x=f(y)是函数y=x+lnx的反函数,求dy2d2fxy′=y1x′,xy′′=−(yx′)3yx′′有yx′=1+x1,yx′′=−x21,xy′′=−(yx′)3yx′′=−(1+x1)3−1/x2=(1+x)3x
多项乘除开方乘方
[ 例 1 ] 设 y = [ ( 1 + x ) ( 3 + x ) 9 ] 1 2 ⋅ ( 2 + x ) 4 , 求 y ′ ( 0 ) 取 对 数 , 再 求 导 ln y = 1 2 ln ( 1 + x ) + 9 2 ln ( 3 + x ) + 4 ln ( 2 + x )    ⟹    1 y ⋅ y ′ = 1 2 ⋅ 1 1 + x + 9 2 ⋅ 1 3 + x + 4 ⋅ 1 2 + x    ⟹    y ′ ( 0 ) = ( 1 2 + 9 6 + 2 ) ⋅ 3 9 2 ⋅ 2 4 = 2 6 ⋅ 3 9 2 [ 例 2 ] 设 f ( x ) = ( 1 + x ) x e x − 1 + arcsin 1 − x 1 + x 2 , 求 f ′ ( 1 ) 令 y 1 = ( 1 + x ) x e x − 1    ⟹    ln y 1 = 1 2 ( ln ( 1 + x ) + 1 2 ln x − ( x − 1 ) )    ⟹    1 y 1 ⋅ y 1 ′ ′ = 1 2 ( 1 1 + x + 1 2 x − 1 )    ⟹    y 1 ′ ( 1 ) 代 入 → 0 令 y 2 = arcsin 1 − x 1 + x 2    ⟹    y 2 ′ ( 1 ) = lim x → 1 y 2 ( x ) − y 2 ( 1 ) x − 1 = lim x → 1 arcsin 1 − x 1 + x 2 − 0 x − 1 = lim x → 1 1 − x 1 + x 2 x − 1 = − 2 2 故 f ′ ( 1 ) = − 2 2 \begin{aligned} \ [例1]&\color{maroon}设y=[(1+x)(3+x)^9]^{\frac12}\cdot(2+x)^4,求y'(0)\\ &取对数,再求导\\ &\ln y=\frac12\ln(1+x)+\frac92\ln(3+x)+4\ln(2+x)\\ &\implies\frac1y\cdot y'=\frac12\cdot\frac1{1+x}+\frac92\cdot\frac1{3+x}+4\cdot\frac1{2+x}\\ &\implies y'(0)=(\frac12+\frac96+2)\cdot3^{\frac92}\cdot2^4=2^6\cdot3^{\frac92}\\ [例2]&\color{maroon}设f(x)=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}+\arcsin\frac{1-x}{\sqrt{1+x^2}},求f'(1)\\ &令y_1=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}\implies\ln{y_1}=\frac12(\ln(1+x)+\frac12\ln x-(x-1))\\ &\implies\frac1{y_1}\cdot y_1''=\frac12(\frac1{1+x}+\frac1{2x}-1)\\ &\implies y'_1(1)\underrightarrow{代入}0\\ &令y_2=\arcsin\frac{1-x}{\sqrt{1+x^2}}\implies y_2'(1)=\lim_{x\to1}\frac{y_2(x)-y_2(1)}{x-1}\\ &=\lim_{x\to1}\frac{\arcsin\frac{1-x}{\sqrt{1+x^2}}-0}{x-1}=\lim_{x\to1}\frac{\frac{1-x}{\sqrt{1+x^2}}}{x-1}=-\frac{\sqrt2}{2}\\ &故f'(1)=-\frac{\sqrt2}2 \end{aligned} [例1][例2]设y=[(1+x)(3+x)9]21⋅(2+x)4,求y′(0)取对数,再求导lny=21ln(1+x)+29ln(3+x)+4ln(2+x)⟹y1⋅y′=21⋅1+x1+29⋅3+x1+4⋅2+x1⟹y′(0)=(21+69+2)⋅329⋅24=26⋅329设f(x)=ex−1(1+x)x+arcsin1+x21−x,求f′(1)令y1=ex−1(1+x)x⟹lny1=21(ln(1+x)+21lnx−(x−1))⟹y11⋅y1′′=21(1+x1+2x1−1)⟹y1′(1)代入0令y2=arcsin1+x21−x⟹y2′(1)=x→1limx−1y2(x)−y2(1)=x→1limx−1arcsin1+x21−x−0=x→1limx−11+x21−x=−22故f′(1)=−22
高阶导数
归纳法
莱布尼茨公式法
展开
[ 例 1 ] 求 下 列 导 数 ( 1 ) y = ln ( 1 + x ) , 求 y ( n ) ( 2 ) y = e x cos x , 求 y ( 4 ) ( 3 ) 设 f ( x ) = ( x 2 − 3 x + 2 ) n cos π x 2 16 , 则 f ( n ) ( 2 ) = ‾ ( 4 ) 设 f ( x ) = x 1 − 2 x 4 , 则 f ( 101 ) ( 0 ) = ‾ ( 1 ) ( 1 x ) ′ = ( x − 1 ) − 1 = ( − 1 ) x − 2 , ( 1 x ) ′ ′ = ( − 1 ) ( − 2 ) x − 3 , ( 1 x ) n = ( − 1 ) n ! x − ( n + 1 ) ( ln x ) ′ = 1 x , ( ln x ) n = ( 1 x ) n − 1 = ( − 1 ) n − 1 ( n − 1 ) ! ( ln ( 1 + x ) ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) − n [ 注 ] 同 理 , ( e x ) ( n ) = e x , ( a x ) ( n ) = a x ( ln a ) n ( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) , ( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) ( 2 ) ( u ⋅ v ) n = ∑ k = 0 n C n k u ( k ) v ( n − k ) = C n 0 u v ( n ) + C n 1 u ′ v ( n − 1 ) + ⋯ + C n n u ( n ) v ( 0 ) cos x ( e x ) 4 + 4 ( − sin x ) ( e x ) ′ ′ ′ + 6 ( − cos x ) ( e x ) ′ ′ + 4 sin x ( e x ) ′ + cos x ⋅ e x ( 3 ) ( x − 2 ) 3 → 3 ( x − 2 ) 2 → 6 ( x − 2 ) → 6 → 3 ! ( x − x 0 ) n 求 n 阶 导 数 得 到 n ! 故 f ( x ) = ( x − 2 ) n ( x − 1 ) n ⋅ cos π x 2 16 f ( n ) ( 2 ) = ( x − 2 ) n ∣ x = 2 + ( x − 2 ) n − 1 ∣ x = 2 + ⋯ + ( x − 2 ) ∣ x = 2 + 1 ⋅ n ! ⋅ 2 2 ( 4 ) { 1. 抽 象 展 开 f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n 2. 具 体 展 开 式 f ( x ) = 3. 展 开 式 唯 一    ⟹    1 = 2    ⟹    f ( n ) ( 0 ) 1. f ( x ) = ∑ m = 0 ∞ f ( m ) ( 0 ) m ! x m 2. f ( x ) = x ⋅ ∑ n = 0 ∞ 2 n ⋅ x 4 n = ∑ n = 0 ∞ 2 n ⋅ x 4 n + 1 3. m = 101    ⟹    f ( 101 ) ( 0 ) ( 101 ) ! x 101    ⟹    4 n + 1 = 101    ⟹    n = 25    ⟹    2 25 x 101 即 f ( 101 ) ( 0 ) = 2 25 ( 101 ) ! [ 注 ] 1 1 − x = 1 + x + x 2 + c d o t s + x n + ⋯ = ∑ n = 0 ∞ x n , ∣ x ∣ < 1 1 1 − 狗 = ∑ n = 0 ∞ 狗 n , ∣ 狗 ∣ < 1 1 1 − 2 x 4 = ∑ n = 0 ∞ ( 2 x 4 ) n , ∣ 2 x 4 ∣ < 1 \begin{aligned} \ [例1]&\color{maroon}求下列导数\\ (1)&\color{maroon}y=\ln(1+x),求y^{(n)}\\ (2)&\color{maroon}y=e^x\cos x,求y^{(4)}\\ (3)&\color{maroon}设f(x)=(x^2-3x+2)^n\cos\frac{\pi x^2}{16},则f^{(n)}(2)=\underline{\quad}\\ (4)&\color{maroon}设f(x)=\frac{x}{1-2x^4},则f^{(101)}(0)=\underline{\quad}\\ (1)&(\frac1x)'=(x^{-1})^{-1}=(-1)x^{-2},(\frac1x)''=(-1)(-2)x^{-3},(\frac1x)^n=(-1)n!x^{-(n+1)}\\ &(\ln x)'=\frac1x,(\ln x)^n=(\frac1x)^{n-1}=(-1)^{n-1}(n-1)!\\ &(\ln(1+x))^{(n)}=(-1)^{n-1}(n-1)!(1+x)^{-n}\\ [注]&同理,(e^x)^{(n)}=e^x,(a^x)^{(n)}=a^x(\ln a)^n\\ &(\sin kx)^{(n)}=k^n\sin(kx+n\cdot\frac{\pi}2),(\cos kx)^{(n)}=k^n\cos(kx+n\cdot\frac{\pi}2)\\ (2)&(u\cdot v)^n=\sum_{k=0}^nC_n^ku^{(k)}v^{(n-k)}=C_n^0uv^{(n)}+C_n^1u'v^{(n-1)}+\cdots+C_n^nu^{(n)}v^{(0)}\\ &\cos x(e^x)^4+4(-\sin x)(e^x)'''+6(-\cos x)(e^x)''+4\sin x(e^x)'+\cos x\cdot e^x\\ (3)&(x-2)^3\to3(x-2)^2\to6(x-2)\to6\to3!\\ &(x-x_0)^n求n阶导数得到n!\\ &故f(x)=(x-2)^n(x-1)^n\cdot\cos\frac{\pi x^2}{16}\\ &f^{(n)}(2)=(x-2)^n|_{x=2}+(x-2)^{n-1}|_{x=2}+\cdots+(x-2)|_{x=2}+1\cdot n!\cdot\frac{\sqrt2}2\\ (4)&\begin{cases}1.抽象展开f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n\\2.具体展开式f(x)=\\3.展开式唯一\implies1=2\implies f^{(n)}(0)\end{cases}\\ &1.f(x)=\sum_{m=0}^{\infty}\frac{f^{(m)}(0)}{m!}x^m\\ &2.f(x)=x\cdot\sum_{n=0}^{\infty}2^n\cdot x^{4n}=\sum_{n=0}^{\infty}2^n\cdot x^{4n+1}\\ &3.m=101\implies \frac{f^{(101)}(0)}{(101)!}x^{101}\implies 4n+1=101\implies n=25\\ &\implies 2^{25}x^{101}即f^{(101)}(0)=2^{25}(101)!\\ [注]&\frac1{1-x}=1+x+x^2+cdots+x^n+\cdots=\sum_{n=0}^{\infty}x^n,\mid x\mid<1\\ &\frac1{1-狗}=\sum_{n=0}^{\infty}狗^n,\mid 狗\mid<1\\ &\frac1{1-2x^4}=\sum_{n=0}^{\infty}(2x^4)^n,\mid 2x^4\mid<1\\ \end{aligned} [例1](1)(2)(3)(4)(1)[注](2)(3)(4)[注]求下列导数y=ln(1+x),求y(n)y=excosx,求y(4)设f(x)=(x2−3x+2)ncos16πx2,则f(n)(2)=设f(x)=1−2x4x,则f(101)(0)=(x1)′=(x−1)−1=(−1)x−2,(x1)′′=(−1)(−2)x−3,(x1)n=(−1)n!x−(n+1)(lnx)′=x1,(lnx)n=(x1)n−1=(−1)n−1(n−1)!(ln(1+x))(n)=(−1)n−1(n−1)!(1+x)−n同理,(ex)(n)=ex,(ax)(n)=ax(lna)n(sinkx)(n)=knsin(kx+n⋅2π),(coskx)(n)=kncos(kx+n⋅2π)(u⋅v)n=k=0∑nCnku(k)v(n−k)=Cn0uv(n)+Cn1u′v(n−1)+⋯+Cnnu(n)v(0)cosx(ex)4+4(−sinx)(ex)′′′+6(−cosx)(ex)′′+4sinx(ex)′+cosx⋅ex(x−2)3→3(x−2)2→6(x−2)→6→3!(x−x0)n求n阶导数得到n!故f(x)=(x−2)n(x−1)n⋅cos16πx2f(n)(2)=(x−2)n∣x=2+(x−2)n−1∣x=2+⋯+(x−2)∣x=2+1⋅n!⋅22⎩⎪⎨⎪⎧1.抽象展开f(x)=∑n=0∞n!f(n)(0)xn2.具体展开式f(x)=3.展开式唯一⟹1=2⟹f(n)(0)1.f(x)=m=0∑∞m!f(m)(0)xm2.f(x)=x⋅n=0∑∞2n⋅x4n=n=0∑∞2n⋅x4n+13.m=101⟹(101)!f(101)(0)x101⟹4n+1=101⟹n=25⟹225x101即f(101)(0)=225(101)!1−x1=1+x+x2+cdots+xn+⋯=n=0∑∞xn,∣x∣<11−狗1=n=0∑∞狗n,∣狗∣<11−2x41=n=0∑∞(2x4)n,∣2x4∣<1
导数的几何应用
研究对象
1. 祖 孙 三 代 { f ( x ) , f n ( x ) , f 1 f 2 … f n f ′ ( x ) , d f ( x ) d x 2 = 1 2 x f ′ ( x ) ∫ a x f ( t ) d t ∑ a n x n 2. 分 段 函 数 ( 含 绝 对 值 函 数 ) 3. 用 参 数 表 示 函 数 { x = x ( t ) y = y ( t ) 4. 隐 函 数 F ( x , y ) = 0 \begin{aligned} &1.祖孙三代\begin{cases}f(x),f_n(x),f_1f_2\ldots f_n\\f'(x),\frac{df(x)}{dx^2}=\frac1{2x}f'(x)\\\int_a^xf(t)dt\\\sum a_nx^n\end{cases}\\ &2.分段函数(含绝对值函数)\\ &3.用参数表示函数\begin{cases}x=x(t)\\y=y(t)\end{cases}\\ &4.隐函数F(x,y)=0 \end{aligned} 1.祖孙三代⎩⎪⎪⎪⎨⎪⎪⎪⎧f(x),fn(x),f1f2…fnf′(x),dx2df(x)=2x1f′(x)∫axf(t)dt∑anxn2.分段函数(含绝对值函数)3.用参数表示函数{x=x(t)y=y(t)4.隐函数F(x,y)=0
研究内容
斜率、切线、法线、截距
y = y ( x )    ⟹    y ′ ( x )    ⟹    k    ⟺    切 线 k , 法 线 − 1 k [ 例 1 ] 曲 线 ( 2 − x n 2 ) y = 1 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 … , 则 lim n → ∞ x n n 2 2 = ? ( f n ( x ) → k ) y = 1 2 − x n 2 , y ′ = − − n 2 x n 2 − 1 ( 2 − x n 2 ) 2 , y ′ ( 1 ) = n 2 = k n 切 线 y − 1 = n 2 ( x − 1 ) , 令 y = 0 , x n = 1 − 1 n 2 故 lim n → ∞ x n n 2 2 = lim n → ∞ ( 1 − 1 n 2 ) n 2 2 = e lim n → ∞ n 2 / 2 ⋅ ( − 1 / n 2 ) = e − 1 2 [ 例 2 ] 使 曲 线 f ( x ) = x n 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 , ⋯   , 求 lim n → ∞ f ( x n ) f ′ ( x ) = n x n − 1    ⟹    k = n , 故 y − 1 = n ( x − 1 )    ⟹    x n = 1 − 1 n 故 I = lim n → ∞ f ( x n ) = lim n → ∞ ( 1 − 1 n ) n = e A = e − 1 其 中 A = lim n → ∞ n ( 1 − 1 n − 1 ) = − 1 [ 例 3 ] 若 曲 线 C : f ( x ) 由 方 程 2 x − y = 2 arctan ( y − x ) 确 定 , 则 曲 线 在 点 ( 1 + π 2 , 2 + π 2 ) 的 切 线 方 程 是 ‾ 2 − y ′ = 2 1 + ( y − x ) 2 ( y ′ − 1 )    ⟹    k = y ′ ∣ p = 3 2    ⟹    y − ( 2 + π 2 ) = 3 2 ( x − ( 1 + π 2 ) ) [ 例 4 ] 已 知 两 条 曲 线 由 y = f ( x ) 与 x y + e x + y = 1 所 确 定 , 且 在 点 ( 0 , 0 ) 处 的 切 线 相 同 , 写 出 此 切 线 方 程 , 求 极 限 lim n → 0 n f ( 2 n ) 由 x y + e x + y = 1 , 知 y + x y ′ + e x + y ( 1 + y ′ ) = 0    ⟹    y ′ ( 0 ) = − 1 = k , ∴ y − 0 = − x    ⟹    I = lim n → ∞ f ( 2 n ) 1 n = lim n → ∞ f ( 0 + 2 n ) − f ( 0 ) 2 n ⋅ 2 = 2 f ′ ( 0 ) = − 2 \begin{aligned} &\color{blue}{y=y(x)\implies y'(x)\implies k\iff切线k,法线-\frac1k}\\ [例1]&\color{maroon}{曲线(2-x^{n^2})y=1在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2\ldots,则\lim_{n\to\infty}x_n^{\frac{n^2}2}=?}\color{green}{(f_n(x)\to k)}\\ &y=\frac1{2-x^{n^2}},y'=-\frac{-n^2x^{n^2-1}}{(2-x^{n^2})^2},y'(1)=n^2=k_n\\ &切线y-1=n^2(x-1),令y=0,x_n=1-\frac1{n^2}\\ &故\lim_{n\to\infty}x_n^{\frac{n^2}2}=\lim_{n\to\infty}(1-\frac1{n^2})^{\frac{n^2}2}=e^{\lim_n\to\infty n^2/2\cdot(-1/n^2)}=e^{-\frac12}\\ [例2]&\color{maroon}使曲线f(x)=x^n在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2,\cdots,求\lim_{n\to\infty}f(x_n)\\ &f'(x)=nx^{n-1}\implies k=n,故y-1=n(x-1)\implies x_n=1-\frac1n\\ &故I=\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}(1-\frac1n)^n=e^A=e^{-1}\\ &其中A=\lim_{n\to\infty}n(1-\frac1n-1)=-1\\ [例3]&\color{maroon}若曲线C:f(x)由方程2x-y=2\arctan(y-x)确定,则曲线在点(1+\frac\pi2,2+\frac\pi2)的切线方程是\underline{\qquad}\\ &2-y'=\frac2{1+(y-x)^2}(y'-1)\implies k=y'|_p=\frac32\\ &\implies y-(2+\frac{\pi}2)=\frac32(x-(1+\frac\pi2))\\ [例4]&\color{maroon}已知两条曲线由y=f(x)与xy+e^{x+y}=1所确定,且在点(0,0)处的切线相同,\\ &\color{maroon}写出此切线方程,求极限\lim_{n\to0}nf(\frac2n)\\ &由xy+e^{x+y}=1,知y+xy'+e^{x+y}(1+y')=0\\ &\implies y'(0)=-1=k,\therefore y-0=-x\\ &\implies I=\lim_{n\to\infty}\frac{f(\frac2n)}{\frac1n}=\lim_{n\to\infty}\frac{f(0+\frac2n)-f(0)}{\frac2n}\cdot2=2f'(0)=-2\\ \end{aligned} [例1][例2][例3][例4]y=y(x)⟹y′(x)⟹k⟺切线k,法线−k1曲线(2−xn2)y=1在点(1,1)处的切线与x轴的交点为(xn,0),n=1,2…,则n→∞limxn2n2=?(fn(x)→k)y=2−xn21,y′=−(2−xn2)2−n2xn2−1,y′(1)=n2=kn切线y−1=n2(x−1),令y=0,xn=1−n21故n→∞limxn2n2=n→∞lim(1−n21)2n2=elimn→∞n2/2⋅(−1/n2)=e−21使曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(xn,0),n=1,2,⋯,求n→∞limf(xn)f′(x)=nxn−1⟹k=n,故y−1=n(x−1)⟹xn=1−n1故I=n→∞limf(xn)=n→∞lim(1−n1)n=eA=e−1其中A=n→∞limn(1−n1−1)=−1若曲线C:f(x)由方程2x−y=2arctan(y−x)确定,则曲线在点(1+2π,2+2π)的切线方程是2−y′=1+(y−x)22(y′−1)⟹k=y′∣p=23⟹y−(2+2π)=23(x−(1+2π))已知两条曲线由y=f(x)与xy+ex+y=1所确定,且在点(0,0)处的切线相同,写出此切线方程,求极限n→0limnf(n2)由xy+ex+y=1,知y+xy′+ex+y(1+y′)=0⟹y′(0)=−1=k,∴y−0=−x⟹I=n→∞limn1f(n2)=n→∞limn2f(0+n2)−f(0)⋅2=2f′(0)=−2
极值、单调性
极 值 点 : 若 存 在 x 0 的 某 个 邻 域 , 使 得 在 该 邻 域 内 任 意 一 点 x , 则 { f ( x ) ≤ f ( x 0 ) → 极 大 值 f ( x ) ≥ f ( x 0 ) → 极 小 值 单 调 性 : 若 y = f ( x ) 在 区 间 I 上 有 f ′ ( x ) > 0 , 则 y = f ( x ) 在 I 上 单 调 增 加 , 若 f ′ ( x ) < 0 , 则 单 调 减 少 判 别 : { 1. 令 f ′ ( x ) = 0    ⟹    x 0 驻 点 ( 不 ∃    ⟹    不 可 导 点 ) 2. 判 别 ( x 0 − δ , x 0 ) 时 , f ′ ( x ) ? 0 , ( x 0 , x 0 + δ ) 时 , f ′ ( x ) ? 0 , → x 0 是 否 为 极 值 点 [ 例 1 ] 求 y = ∑ k = 0 n x k k ! ⋅ e − x 的 极 值 ( ∑ a n x n → 极 值 / 单 调 性 ) y = ∑ k = 0 n x k k ! ⋅ e − x = ( 1 + x + x 2 2 ! + ⋯ + x n n ! ) ⋅ e − x 1. y ′ = ( 1 + x + x 2 2 ! + ⋯ + x n − 1 n − 1 ) ⋅ e − x + ( 1 + x + x 2 2 ! + ⋯ + x n n ! ) ⋅ e − x ⋅ ( − 1 ) = − x n n ! ⋅ e − x 令 y ′ = 0    ⟹    x = 0 ( 驻 点 ) 2. { n 为 偶 数 { x < 0 x > 0 → y ′ ( x ) < 0 → x = 0 不 是 极 值 点 n 为 奇 数 { x < 0 → y ′ ( x ) > 0 x > 0 → y ′ ( x ) < 0 → x = 0 是 极 大 值 点 [ 例 2 ] { x 2 x , x > 0 x e x + 1 , x ≤ 0 求 f ′ ( x ) 并 求 f ( x ) 的 极 值 1. x > 0 , f ′ ( x ) = ( x 2 x ) ′ = ( e 2 x ln x ) ′ = e 2 x ln x ⋅ ( 2 ln x + x ) = 2 x 2 x ⋅ ( ln x + 1 ) x < 0 , f ′ ( x ) = e x + x ⋅ e x = ( 1 + x ) e x x = 0 , f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + e 2 x ln x − 1 x = − ∞ , 不 存 在 则 f ′ ( x ) = { 2 x 2 x ⋅ ( ln x + 1 ) , x > 0 ( 1 + x ) e x , x < 0 2. 令 2 x 2 x ⋅ ( ln x + 1 ) = 0    ⟹    x = 1 e    ⟺    0 < x < 1 e → f ′ ( x ) < 0 x > 1 e → f ′ ( x ) > 0 lim x → 0 + x 2 x = e 0 = 1 = f ( 0 ) , ∴ 极 小 值 f ( 1 e ) = e − 2 e 令 ( 1 + x ) e x = 0    ⟹    x = − 1    ⟺    x < − 1 → f ′ ( x ) < 0 x > − 1    ⟹    f ′ ( x ) > 0 ∴ 极 小 值 f ( − 1 ) = 1 − 1 e 且 极 大 值 f ( 0 ) = 1 [ 例 3 ] 求 双 曲 线 y 1 = 1 x 与 抛 物 线 y 2 = x 的 交 角 交 点 ( 1 , 1 ) , y 1 ′ ( 1 ) = ( − 1 x 2 ) ∣ x = 1 = − 1 = tan α y 2 ′ ( 1 ) = ( 1 2 x ) ∣ x = 1 = 1 2 = tan β    ⟹    r = α − β = 3 4 π − arctan 1 2 [ 例 4 ] 求 函 数 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ 的 极 值 f ( x ) = { − x e x − 1 , x < 0 0 , x = 0 x e x − 1 , 0 < x < 1 1 , x = 1 x e 1 − x , x > 1 f ′ ( x ) = { − e x − 1 − x e x − 1 , x < 0 e x − 1 + x e x − 1 , 0 < x < 1 e 1 − x − x e 1 x , x > 1 f ( ′ 0 ) = − e − 1 , f + ′ ( 0 ) = e − 1 , ∴ f ′ ( 0 ) 不 存 在 f ( ′ 1 ) = 2 , f + ′ ( 1 ) = 0 , ∴ f ′ ( 1 ) 不 存 在 知 x 1 = − 1 , x 2 = 0 , x 3 = 1 , 则 x 1 = − 1 为 极 大 点 , x 2 = 0 为 极 小 点 , x 3 = 1 为 极 大 点 [ 例 5 ] 设 正 值 函 数 f ( x ) 在 ( 1 , + ∞ ) 内 连 续 , 求 函 数 F ( x ) = ∫ 1 x [ ( 2 x + ln x ) − ( 2 t + ln t ) ] f ( t ) d t 的 最 小 值 点 F ( x ) = ∫ 1 x ( 2 x + ln x ) f ( t ) d t − ∫ 1 x ( 2 t + ln t ) f ( t ) d t = ( 2 x + ln x ) ∫ 1 x f ( t ) d t − ∫ 1 x ( 2 t + ln t ) f ( t ) d t    ⟹    F ′ ( x ) = ( − 2 x 2 + 1 x ) ∫ 1 x f ( t ) d t + ( 2 x + ln x ) F ( x ) − ( 2 x + ln x ) f ( x ) 由 F ′ ( x ) = 0 知 x = 2 是 唯 一 极 小 值 点 , ∴ x = 2 是 最 小 值 点 [ 例 6 ] 设 f ( x ) = { lim n → ∞ 1 n ( 1 + cos x n + cos 2 x n + ⋯ + cos n − 1 n x ) , x > 0 1 , x = 0 f ( − x ) , x < 0 ( 1 ) 求 f ′ ( 0 ) ( 2 ) 求 f ( x ) 在 [ − π , π ] 上 的 最 大 值 ( 1 ) x > 0 时 , f ( x ) = lim n → ∞ ∑ i = 0 n − 1 cos i n x ⋅ 1 n = lim n → ∞ ∑ i = 0 n − 1 cos x n i ⋅ x n ⋅ 1 x = 1 x ∫ 0 x cos t d t = sin x x    ⟹    f ( x ) = { sin x x , x > 0 1 , x = 0 sin x x , x < 0 为 偶 函 数 f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 sin x x − 1 x = lim x → 0 sin x − x x 2 = 0 ( 2 ) 只 研 究 [ 0 , π ] , f ′ ( x ) = ( sin x x ) ′ = x cos x − sin x x 2 令 g ( x ) = x cos x − sin x 则 g ′ ( x ) = cos x + x ( − sin x ) − cos x = − x sin x ≤ 0    ⟹    g ( x ) 单 调 递 减 , g ( 0 ) = 0    ⟹    g ( x ) < 0    ⟹    f ′ ( x ) < 0    ⟹    f ( x ) 单 调 递 减 , f ( 0 ) = 1 , f ( π ) = 0    ⟹    [ 0 , 1 ] [ 例 7 ] 已 知 f ′ ( − x ) = x [ f ′ ( x ) + 1 ] , 求 f ( x ) 的 极 值 点 , 并 说 明 是 极 大 值 点 还 是 极 小 值 点 f ′ ( − 1 x ) = x [ f ′ ( x ) + 1 ]    ⟹    f ′ ( x ) = − x [ f ′ ( x ) + 1 ] 代 入 , 得 f ′ ( x ) = − x [ x [ f ′ ( x ) + 1 ] + 1 ]    ⟹    f ′ ( x ) = − x 2 − x 1 + x 2 由 f ′ ( x ) = 0 , 知 x 1 = 0 , x 2 = − 1 ∴ x 1 = 0 是 极 大 值 点 , x 2 = − 1 是 极 小 值 点 \begin{aligned} &\color{blue}极值点:若存在x_0的某个邻域,使得在该邻域内任意一点x,则\begin{cases}f(x)\leq f(x_0)\to极大值\\f(x)\geq f(x_0)\to极小值\end{cases}\\ &\color{blue}单调性:若y=f(x)在区间I上有f'(x)>0,则y=f(x)在I上单调增加,若f'(x)<0,则单调减少\\ &\color{blue}判别: \begin{cases}1.令f'(x)=0\implies x_0驻点(不\exists\implies不可导点)\\2.判别(x_0-\delta,x_0)时,f'(x)?0,(x_0,x_0+\delta)时,f'(x)?0,\to x_0是否为极值点\end{cases}\\ [例1]&\color{maroon}{求y=\sum_{k=0}^n\frac{x^k}{k!}\cdot e^{-x}的极值}\color{green}{(\sum a_nx^n\to极值/单调性)}\\ &y=\sum_{k=0}^n\frac{x^k}{k!}\cdot e^{-x}=(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!})\cdot e^{-x}\\ &1.y'=(1+x+\frac{x^2}{2!}+\cdots+\frac{x^{n-1}}{n-1})\cdot e^{-x}+(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!})\cdot e^{-x}\cdot(-1)=-\frac{x^n}{n!}\cdot e^{-x}\\ &令y'=0\implies x=0(驻点)\\ &2.\begin{cases}n为偶数\begin{cases}x<0\\x>0\end{cases}\to y'(x)<0\to x=0不是极值点\\n为奇数\begin{cases}x<0\to y'(x)>0\\x>0\to y'(x)<0\end{cases}\to x=0是极大值点\end{cases}\\ [例2]&\color{maroon}{\begin{cases}x^{2x},x>0\\xe^x+1,x\leq0\end{cases}求f'(x)并求f(x)的极值}\\ &1.x>0,f'(x)=(x^{2x})'=(e^{2x\ln x})'=e^{2x\ln x}\cdot(2\ln x+x)=2x^{2x}\cdot(\ln x+1)\\ &x<0,f'(x)=e^x+x\cdot e^x=(1+x)e^x\\ &x=0,f'_+(0)=\lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^+}\frac{e^{2x\ln x}-1}{x}=-\infty,不存在\\ &则f'(x)=\begin{cases}2x^{2x}\cdot(\ln x+1),x>0\\(1+x)e^x,x<0\end{cases}\\ &2.令2x^{2x}\cdot(\ln x+1)=0\implies x=\frac1e\iff0< x<\frac1e\to f'(x)<0\qquad x>\frac1e\to f'(x)>0\\ &\lim_{x\to0^+}x^{2x}=e^0=1=f(0),\therefore 极小值f(\frac1e)=e^{-\frac2e}\\ &令(1+x)e^x=0\implies x=-1\iff x<-1\to f'(x)<0\qquad x>-1\implies f'(x)>0\\ &\therefore极小值f(-1)=1-\frac1e且极大值f(0)=1\\ [例3]&\color{maroon}求双曲线y_1=\frac1x与抛物线y_2=\sqrt x的交角\\ &交点(1,1),y_1'(1)=(-\frac1{x^2})|_{x=1}=-1=\tan\alpha\\ &y_2'(1)=(\frac1{2\sqrt x})|_{x=1}=\frac12=\tan\beta\\ &\implies r=\alpha-\beta=\frac34\pi-\arctan\frac12\\ [例4]&\color{maroon}求函数f(x)=|x|e^{-|x-1|}的极值\\ &f(x)=\begin{cases}-xe^{x-1},x<0\\0,x=0\\xe^{x-1},0< x<1\\ 1,x=1\\xe^{1-x},x>1\end{cases}\qquad f'(x)=\begin{cases}-e^{x-1}-xe^{x-1},x<0\\e^{x-1}+xe^{x-1},0< x<1\\ e^{1-x}-xe^{1_x},x>1\end{cases}\\ &f'_(0)=-e^{-1},f'_+(0)=e^{-1},\therefore f'(0)不存在\\ &f'_(1)=2,f'_+(1)=0,\therefore f'(1)不存在\\ &知x_1=-1,x_2=0,x_3=1,则x_1=-1为极大点,x_2=0为极小点,x_3=1为极大点\\ [例5]&\color{maroon}设正值函数f(x)在(1,+\infty)内连续,求函数F(x)=\int_1^x[(\frac2x+\ln x)-(\frac2t+\ln t)]f(t)dt的最小值点\\ &F(x)=\int_1^x(\frac2x+\ln x)f(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &=(\frac2x+\ln x)\int_1^xf(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ & \implies F'(x)=(-\frac2{x^2}+\frac1x)\int_1^xf(t)dt+(\frac2x+\ln x)F(x)-(\frac2x+\ln x)f(x)\\ &由F'(x)=0知x=2是唯一极小值点,\therefore x=2是最小值点\\ [例6]&\color{maroon}设f(x)=\begin{cases}\lim_{n\to\infty}\frac1n(1+\cos\frac xn+\cos\frac{2x}n+\cdots+\cos\frac{n-1}nx),x>0\\1,x=0\\f(-x),x<0\end{cases}\\ &\color{maroon}(1)求f'(0)\qquad(2)求f(x)在[-\pi,\pi]上的最大值\\ (1)&x>0时,f(x)=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac inx\cdot\frac1n=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac xni\cdot\frac xn\cdot\frac1x\\ &=\frac1x\int_0^x\cos tdt=\frac{\sin x}{x}\implies f(x)=\begin{cases}\frac{\sin x}{x},x>0\\1,x=0\\ \frac{\sin x}x,x<0\end{cases}为偶函数\\ &f'(0)=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0}\frac{\frac{\sin x}x-1}{x}=\lim_{x\to0}\frac{\sin x-x}{x^2}=0\\ (2)&只研究[0,\pi],f'(x)=(\frac{\sin x}{x})'=\frac{x\cos x-\sin x}{x^2}\\ &令g(x)=x\cos x-\sin x\\ &则g'(x)=\cos x+x(-\sin x)-\cos x=-x\sin x\leq0\\ &\implies g(x)单调递减,g(0)=0\implies g(x)<0\\ &\implies f'(x)<0\implies f(x)单调递减,f(0)=1,f(\pi)=0\implies [0,1]\\ [例7]&\color{maroon}已知f'(-x)=x[f'(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点\\ &f'(-1x)=x[f'(x)+1]\implies f'(x)=-x[f'(x)+1]\\ &代入,得f'(x)=-x[x[f'(x)+1]+1]\implies f'(x)=\frac{-x^2-x}{1+x^2}\\ &由f'(x)=0,知x_1=0,x_2=-1\\ &\therefore x_1=0是极大值点,x_2=-1是极小值点\\ \end{aligned} [例1][例2][例3][例4][例5][例6](1)(2)[例7]极值点:若存在x0的某个邻域,使得在该邻域内任意一点x,则{f(x)≤f(x0)→极大值f(x)≥f(x0)→极小值单调性:若y=f(x)在区间I上有f′(x)>0,则y=f(x)在I上单调增加,若f′(x)<0,则单调减少判别:{1.令f′(x)=0⟹x0驻点(不∃⟹不可导点)2.判别(x0−δ,x0)时,f′(x)?0,(x0,x0+δ)时,f′(x)?0,→x0是否为极值点求y=k=0∑nk!xk⋅e−x的极值(∑anxn→极值/单调性)y=k=0∑nk!xk⋅e−x=(1+x+2!x2+⋯+n!xn)⋅e−x1.y′=(1+x+2!x2+⋯+n−1xn−1)⋅e−x+(1+x+2!x2+⋯+n!xn)⋅e−x⋅(−1)=−n!xn⋅e−x令y′=0⟹x=0(驻点)2.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧n为偶数{x<0x>0→y′(x)<0→x=0不是极值点n为奇数{x<0→y′(x)>0x>0→y′(x)<0→x=0是极大值点{x2x,x>0xex+1,x≤0求f′(x)并求f(x)的极值1.x>0,f′(x)=(x2x)′=(e2xlnx)′=e2xlnx⋅(2lnx+x)=2x2x⋅(lnx+1)x<0,f′(x)=ex+x⋅ex=(1+x)exx=0,f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limxe2xlnx−1=−∞,不存在则f′(x)={2x2x⋅(lnx+1),x>0(1+x)ex,x<02.令2x2x⋅(lnx+1)=0⟹x=e1⟺0<x<e1→f′(x)<0x>e1→f′(x)>0x→0+limx2x=e0=1=f(0),∴极小值f(e1)=e−e2令(1+x)ex=0⟹x=−1⟺x<−1→f′(x)<0x>−1⟹f′(x)>0∴极小值f(−1)=1−e1且极大值f(0)=1求双曲线y1=x1与抛物线y2=x的交角交点(1,1),y1′(1)=(−x21)∣x=1=−1=tanαy2′(1)=(2x1)∣x=1=21=tanβ⟹r=α−β=43π−arctan21求函数f(x)=∣x∣e−∣x−1∣的极值f(x)=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧−xex−1,x<00,x=0xex−1,0<x<11,x=1xe1−x,x>1f′(x)=⎩⎪⎨⎪⎧−ex−1−xex−1,x<0ex−1+xex−1,0<x<1e1−x−xe1x,x>1f(′0)=−e−1,f+′(0)=e−1,∴f′(0)不存在f(′1)=2,f+′(1)=0,∴f′(1)不存在知x1=−1,x2=0,x3=1,则x1=−1为极大点,x2=0为极小点,x3=1为极大点设正值函数f(x)在(1,+∞)内连续,求函数F(x)=∫1x[(x2+lnx)−(t2+lnt)]f(t)dt的最小值点F(x)=∫1x(x2+lnx)f(t)dt−∫1x(t2+lnt)f(t)dt=(x2+lnx)∫1xf(t)dt−∫1x(t2+lnt)f(t)dt⟹F′(x)=(−x22+x1)∫1xf(t)dt+(x2+lnx)F(x)−(x2+lnx)f(x)由F′(x)=0知x=2是唯一极小值点,∴x=2是最小值点设f(x)=⎩⎪⎨⎪⎧limn→∞n1(1+cosnx+cosn2x+⋯+cosnn−1x),x>01,x=0f(−x),x<0(1)求f′(0)(2)求f(x)在[−π,π]上的最大值x>0时,f(x)=n→∞limi=0∑n−1cosnix⋅n1=n→∞limi=0∑n−1cosnxi⋅nx⋅x1=x1∫0xcostdt=xsinx⟹f(x)=⎩⎪⎨⎪⎧xsinx,x>01,x=0xsinx,x<0为偶函数f′(0)=x→0limx−0f(x)−f(0)=x→0limxxsinx−1=x→0limx2sinx−x=0只研究[0,π],f′(x)=(xsinx)′=x2xcosx−sinx令g(x)=xcosx−sinx则g′(x)=cosx+x(−sinx)−cosx=−xsinx≤0⟹g(x)单调递减,g(0)=0⟹g(x)<0⟹f′(x)<0⟹f(x)单调递减,f(0)=1,f(π)=0⟹[0,1]已知f′(−x)=x[f′(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点f′(−1x)=x[f′(x)+1]⟹f′(x)=−x[f′(x)+1]代入,得f′(x)=−x[x[f′(x)+1]+1]⟹f′(x)=1+x2−x2−x由f′(x)=0,知x1=0,x2=−1∴x1=0是极大值点,x2=−1是极小值点
拐点、凹凸性
凹 凸 性 判 别 : 设 函 数 f ( x ) 在 I 上 二 阶 可 导 , 则 f ′ ′ ( x ) > 0 为 凹 , f ′ ′ ( x ) < 0 为 凸 拐 点 : 设 f ′ ′ ( x 0 ) 存 在 , 且 点 ( x 0 , f ( x 0 ) ) 为 曲 线 上 的 拐 点 , 则 f ′ ′ ( x 0 ) = 0 参 数 方 程 求 导 : { x = x ( t ) y = y ( t ) → { d y d x = d y / d t d x / d t = y ′ ( t x ′ ( t ) = f ( t ) d 2 y d x 2 = d ( d y / d x ) d x = d f ( t ) / d t d x / d t [ 例 ] y ( x ) = { x = 1 3 t 3 + t + 1 3 y = 1 3 t 3 − t + 1 3 , 求 y = y ( x ) 的 极 值 、 凹 凸 性 和 拐 点 ( 参 数 方 程 → 凹 凸 性 / 拐 点 ) [ 分 析 ] d y d x = y ′ ( t ) x ′ ( t ) = t 2 − 1 t 2 + 1 d 2 y d x 2 = f ′ ( t ) x ′ ( t ) = [ 2 t ( t 2 + 1 ) − ( t 2 − 1 ) ⋅ 2 t ] / ( t 2 + 1 ) 2 t 2 + 1 = 2 t 3 + 2 t − 2 t 3 + 2 t ( t 2 + 1 ) 2 ⋅ 1 ( t 2 + 1 ) = 4 t ( t 2 + 1 ) 3 令 d y d x = 0 → t = ± 1 d 2 y d x 2 → t = 0 t ( − ∞ , − 1 ) − 1 ( − 1 , 0 ) 0 ( 0 , 1 ) 1 ( 1 , + ∞ ) x ( − ∞ , − 1 ) − 1 ( − 1 , 1 3 ) 1 3 ( 1 3 , 3 5 ) 3 5 ( 3 5 , + ∞ ) y ′ + 0 − − 1 − 0 + y ′ ′ − − − 0 + + + \begin{aligned} &\color{blue}凹凸性判别:设函数f(x)在I上二阶可导,则f''(x)>0为凹,f''(x)<0为凸\\ &拐点:设f''(x_0)存在,且点(x_0,f(x_0))为曲线上的拐点,则f''(x_0)=0\\ &参数方程求导:\begin{cases}x=x(t)\\y=y(t)\end{cases}\to\begin{cases}\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{y'(t}{x'(t)}=f(t)\\ \frac{d^2y}{dx^2}=\frac{d(dy/dx)}{dx}=\frac{df(t)/dt}{dx/dt}\end{cases}\\ &\color{maroon}{[例]y(x)=\begin{cases}x=\frac13t^3+t+\frac13\\y=\frac13t^3-t+\frac13\end{cases},求y=y(x)的极值、凹凸性和拐点}\color{green}{(参数方程\to凹凸性/拐点)}\\ &\color{black}[分析]\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{t^2-1}{t^2+1}\\ &\frac{d^2y}{dx^2}=\frac{f'(t)}{x'(t)}=\frac{[2t(t^2+1)-(t^2-1)\cdot2t]/(t^2+1)^2}{t^2+1}=\frac{2t^3+2t-2t^3+2t}{(t^2+1)^2}\cdot\frac1{(t^2+1)}=\frac{4t}{(t^2+1)^3}\\ &令\frac{dy}{dx}=0\to t=\pm1\qquad\frac{d^2y}{dx^2}\to t=0\\& \begin{array}{c|c|c|c|c|c|c|c} t & (-\infty,-1) & -1 & (-1,0) & 0 & (0,1) & 1 & (1,+\infty) \\ \hline x & (-\infty,-1) & -1 & (-1,\frac13) & \frac13 & (\frac13,\frac35) & \frac35 & (\frac35,+\infty) \\ \hline y' & + & 0 & - & -1 & - & 0 & + \\ \hline y'' & - & - & - & 0 & + & + & + \end{array}\qquad\qquad\qquad\qquad\qquad\quad\qquad \end{aligned} 凹凸性判别:设函数f(x)在I上二阶可导,则f′′(x)>0为凹,f′′(x)<0为凸拐点:设f′′(x0)存在,且点(x0,f(x0))为曲线上的拐点,则f′′(x0)=0参数方程求导:{x=x(t)y=y(t)→{dxdy=dx/dtdy/dt=x′(t)y′(t=f(t)dx2d2y=dxd(dy/dx)=dx/dtdf(t)/dt[例]y(x)={x=31t3+t+31y=31t3−t+31,求y=y(x)的极值、凹凸性和拐点(参数方程→凹凸性/拐点)[分析]dxdy=x′(t)y′(t)=t2+1t2−1dx2d2y=x′(t)f′(t)=t2+1[2t(t2+1)−(t2−1)⋅2t]/(t2+1)2=(t2+1)22t3+2t−2t3+2t⋅(t2+1)1=(t2+1)34t令dxdy=0→t=±1dx2d2y→t=0txy′y′′(−∞,−1)(−∞,−1)+−−1−10−(−1,0)(−1,31)−−031−10(0,1)(31,53)−+1530+(1,+∞)(53,+∞)++
渐近线
判 别 { 水 平 渐 近 线 : lim x → ∞ f ( x ) = A 铅 锤 渐 近 线 : lim x → x 0 = ∞ 斜 渐 近 线 : lim x → + ∞ y ( x ) x = k ( 同 阶 才 可 以 ) , 若 k ≠ 0 , 则 求 b = lim x → + ∞ [ y ( x ) − k x ] , 得 y = k x + b [ 例 1 ] 求 y = 4 x 2 + x ⋅ ln ( 2 + 1 x ) 的 全 部 渐 近 线 ( f ( x ) 复 杂 → 渐 近 线 ) [ 分 析 ] 由 两 个 分 部 得 定 义 域 x ∈ ( − ∞ , − 1 2 ) ⋃ ( 0 , + ∞ ) 1. lim x → − 1 2 − 0 4 x 2 + x ⋅ ln ( 2 + 1 x ) = − ∞    ⟺    x = − 1 2 是 一 条 铅 锤 渐 近 线 lim x → 0 + 4 x 2 + x ⋅ ln ( 2 + 1 x ) = lim x → 0 + 4 x 2 + x ⋅ ln ( 2 x + 1 ) − lim x → 0 + 4 x 2 + x ⋅ ln x = − lim x → 0 + 4 x + 1 ⋅ x ⋅ ln x = 0 2. lim x → + ∞ 4 x 2 + x ⋅ ln ( 2 + 1 x ) = + ∞ , 没 有 水 平 渐 近 线 3. lim x → + ∞ y x = lim x → + ∞ 4 + 1 x ⋅ ln ( 2 + 1 x ) = 2 ln 2 ≠ 0 , 故 k ∃ b = lim x → + ∞ [ y − k x ] = lim x → + ∞ ( 4 x 2 + x ln ( 2 + 1 x ) − 2 ln 2 ⋅ x ) , 令 x = 1 t b = lim t → 0 + ( 4 + t t 2 ln ( 2 + t ) − 2 ln 2 t ) = lim t → 0 + 4 + t ln ( 2 + t ) − 2 ln 2 t = lim t → 0 + 1 2 4 + t ln ( 2 + t ) + 4 + t 2 + t = 1 4 ln 2 + 1 y = 2 ln 2 ⋅ x + 1 4 ln 2 + 1 为 斜 渐 近 线 当 x → − ∞ 时 , y = − a x − b = − 2 ln 2 ⋅ x − ( 1 4 ln 2 + 1 ) 为 另 一 斜 渐 近 线 [ 注 ] lim x → 0 + x α ln x = lim x → 0 + ln x x − α = lim x → 0 + x − 1 − α x − α − 1 = − 1 α lim x → 0 + x α = 0 [ 例 2 ] 求 下 列 各 题 ( 1 ) x > 0 , y = x sin 1 x , 求 其 水 平 渐 近 线 ( 2 ) x > 0 , y = x + sin 1 x , 求 其 斜 渐 近 线 ( 3 ) y = ln ( e − 1 x ) , 求 其 铅 垂 渐 近 线 ( 1 ) lim x → + ∞ x sin 1 x = lim x → + ∞ sin 1 x 1 x = 1    ⟹    y = 1 为 水 平 渐 近 线 ( 2 ) lim x → + ∞ y x = lim x → + ∞ x + sin 1 x x = 1 = a b = lim x → + ∞ [ y ( a x ) − a x ] = lim x → + ∞ sin 1 x = 0    ⟹    y = a x + b 为 斜 渐 近 线 ( 3 ) 有 e − 1 x > 0 , x > 1 e 故 lim x → 0 − ln ( e − 1 x ) = + ∞    ⟹    x = 0 是 铅 垂 渐 近 线 lim x → 1 e + 0 ln ( e − 1 x ) = − ∞    ⟹    x = 1 e 是 铅 垂 渐 近 线 \begin{aligned} &\color{blue}判别\begin{cases}水平渐近线:\lim_{x\to\infty}f(x)=A\\ 铅锤渐近线:\lim_{x\to x_0}=\infty\\ 斜渐近线:\lim_{x\to+\infty}\frac{y(x)}x=k(同阶才可以),若k\neq0,则求b=\lim_{x\to+\infty}[y(x)-kx],得y=kx+b\end{cases}\\ [例1]&\color{maroon}{求y=\sqrt{4x^2+x}\cdot\ln(2+\frac1x)的全部渐近线}\color{green}{(f(x)复杂\to渐近线)}\\ &\color{black}[分析]由两个分部得定义域x\in(-\infty,-\frac12)\bigcup(0,+\infty)\\ 1.&\lim_{x\to-\frac12-0}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=-\infty\iff x=-\frac12是一条铅锤渐近线\\ &\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln(2x+1)-\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln x\\ &=-\lim_{x\to0^+}\sqrt{4x+1}\cdot\sqrt x\cdot\ln x=0\\ 2.&\lim_{x\to+\infty}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=+\infty,没有水平渐近线\\ 3.&\lim_{x\to+\infty}\frac yx=\lim_{x\to+\infty}\sqrt{4+\frac1x}\cdot\ln(2+\frac1x)=2\ln 2\neq0,故k\ \exists\\ &b=\lim_{x\to+\infty}[y-kx]=\lim_{x\to+\infty}(\sqrt{4x^2+x}\ln(2+\frac1x)-2\ln2\cdot x),令x=\frac1t\\ &b=\lim_{t\to0^+}(\sqrt{\frac{4+t}{t^2}}\ln(2+t)-\frac{2\ln2}{t})=\lim_{t\to0^+}\frac{\sqrt{4+t}\ln(2+t)-2\ln2}{t}\\ &=\lim_{t\to0^+}\frac{1}{2\sqrt{4+t}}\ln(2+t)+\frac{\sqrt{4+t}}{2+t}=\frac14\ln2+1\\ &y=2\ln2\cdot x+\frac14\ln2+1为斜渐近线\\ &当x\to-\infty时,y=-ax-b=-2\ln2\cdot x-(\frac14\ln2+1)为另一斜渐近线\\ &\color{red}{[注]\lim_{x\to0^+}x^{\alpha}\ln x=\lim_{x\to0^+}\frac{\ln x}{x^{-\alpha}}=\lim_{x\to0^+}\frac{x^{-1}}{-\alpha x^{-\alpha-1}}=-\frac1{\alpha}\lim_{x\to0^+}x^\alpha=0}\\ [例2]&\color{maroon}求下列各题\\ (1)&\color{maroon}x>0,y=x\sin\frac1x,求其水平渐近线\\ (2)&\color{maroon}x>0,y=x+\sin\frac1x,求其斜渐近线\\ (3)&\color{maroon}y=\ln(e-\frac1x),求其铅垂渐近线\\ (1)&\lim_{x\to+\infty}x\sin\frac1x=\lim_{x\to+\infty}\frac{\sin\frac1x}{\frac1x}=1\implies y=1为水平渐近线\\ (2)&\lim_{x\to+\infty}\frac{y}x=\lim_{x\to+\infty}\frac{x+\sin\frac1x}x=1=a\\ &b=\lim_{x\to+\infty}[y(ax)-ax]=\lim_{x\to+\infty}\sin\frac1x=0\implies y=ax+b为斜渐近线\\ (3)&有e-\frac1x>0,x>\frac1e\\ &故\lim_{x\to0^-}\ln(e-\frac1x)=+\infty\implies x=0是铅垂渐近线\\ &\lim_{x\to\frac1e^{+0}}\ln(e-\frac1x)=-\infty\implies x=\frac1e是铅垂渐近线\\ \end{aligned} [例1]1.2.3.[例2](1)(2)(3)(1)(2)(3)判别⎩⎪⎨⎪⎧水平渐近线:limx→∞f(x)=A铅锤渐近线:limx→x0=∞斜渐近线:limx→+∞xy(x)=k(同阶才可以),若k̸=0,则求b=limx→+∞[y(x)−kx],得y=kx+b求y=4x2+x⋅ln(2+x1)的全部渐近线(f(x)复杂→渐近线)[分析]由两个分部得定义域x∈(−∞,−21)⋃(0,+∞)x→−21−0lim4x2+x⋅ln(2+x1)=−∞⟺x=−21是一条铅锤渐近线x→0+lim4x2+x⋅ln(2+x1)=x→0+lim4x2+x⋅ln(2x+1)−x→0+lim4x2+x⋅lnx=−x→0+lim4x+1⋅x⋅lnx=0x→+∞lim4x2+x⋅ln(2+x1)=+∞,没有水平渐近线x→+∞limxy=x→+∞lim4+x1⋅ln(2+x1)=2ln2̸=0,故k ∃b=x→+∞lim[y−kx]=x→+∞lim(4x2+xln(2+x1)−2ln2⋅x),令x=t1b=t→0+lim(t24+tln(2+t)−t2ln2)=t→0+limt4+tln(2+t)−2ln2=t→0+lim24+t1ln(2+t)+2+t4+t=41ln2+1y=2ln2⋅x+41ln2+1为斜渐近线当x→−∞时,y=−ax−b=−2ln2⋅x−(41ln2+1)为另一斜渐近线[注]x→0+limxαlnx=x→0+limx−αlnx=x→0+lim−αx−α−1x−1=−α1x→0+limxα=0求下列各题x>0,y=xsinx1,求其水平渐近线x>0,y=x+sinx1,求其斜渐近线y=ln(e−x1),求其铅垂渐近线x→+∞limxsinx1=x→+∞limx1sinx1=1⟹y=1为水平渐近线x→+∞limxy=x→+∞limxx+sinx1=1=ab=x→+∞lim[y(ax)−ax]=x→+∞limsinx1=0⟹y=ax+b为斜渐近线有e−x1>0,x>e1故x→0−limln(e−x1)=+∞⟹x=0是铅垂渐近线x→e1+0limln(e−x1)=−∞⟹x=e1是铅垂渐近线
导数的证明性应用
中值定理
设 f ( x ) 在 [ a , b ] 上 连 续 ( 涉 及 函 数 f ( x ) 的 中 值 定 理 ) 1. 有 界 性 定 理 : ∣ f ( x ) ∣ ≤ k 2. 最 值 定 理 : m ≤ f ( x ) ≤ M 3. 介 值 定 理 : 若 m ≤ μ ≤ M , ∃ ξ ∈ [ a , b ] , 使 f ( ξ ) = μ 4. 零 点 定 理 : 若 f ( a ) , f ( b ) < 0    ⟹    ∃ ξ ∈ ( a , b ) , 使 f ( ξ ) = 0 涉 及 到 导 数 f ′ ( x ) 的 中 值 定 理 5. 费 马 定 理 : 设 f ( x ) 在 x 0 处 { 可 导 取 极 值    ⟹    f ′ ( x 0 ) = 0 6. 罗 尔 定 理 : 设 f ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 f ( a ) = f ( b )    ⟹    ∃ f ′ ( ξ ) = 0 , ξ ∈ ( a , b ) 7. 拉 格 朗 日 中 值 定 理 : 设 f ( x ) { [ a , b ] 连 续 ( a , b ) 可 导    ⟹    f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) , ∃ ξ ∈ ( a , b ) 8. 柯 西 中 值 定 理 : 设 f ( x ) , g ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 g ′ ( x ) ̸ = 0    ⟹    f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) , ∃ ξ ∈ ( a , b ) 9. 泰 勒 公 式 : f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + { ∘ ( ( x = x 0 ) n ) f ( n ) ( ξ ) n ! ( x − x 0 ) n + 1 麦 克 劳 林 公 式 : f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + { ∘ ( x n ) 佩 亚 诺 余 项 f n + 1 ( ξ ) ( n + 1 ) ! x n + 1 拉 格 朗 日 余 项 10. 积 分 中 值 定 理 : 设 f ( x ) 在 [ a , b ] 上 连 续    ⟹    ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , ∃ ξ ∈ [ a , b ] [ 注 ] 称 { f ^ = 1 b − a ∫ a b f ( x ) d x f ^ = 1 n ∑ i = 1 n f ( x i ) 叫 f ( x ) 在 [ a , b ] 上 的 平 均 值 \begin{aligned} &设f(x)在[a,b]上连续\color{grey}{(涉及函数f(x)的中值定理)}\\ &\color{black}1.有界性定理: |f(x)|\leq k\\ &2.最值定理: m\leq f(x)\leq M\\ &3.介值定理: 若m\leq \mu\leq M,\exists\xi\in[a,b],使f(\xi)=\mu\\ &4.零点定理:若f(a),f(b)<0\implies\exists\xi\in(a,b),使f(\xi)=0\\ &\color{grey}{涉及到导数f'(x)的中值定理}\\ &\color{black}5.费马定理:设f(x)在x_0处\begin{cases}可导\\取极值\end{cases}\implies f'(x_0)=0\\ &6.罗尔定理:设f(x)\begin{cases}[a,b]连续\\(a,b)可导\\f(a)=f(b)\end{cases}\implies \exists f'(\xi)=0,\xi\in(a,b)\\ &7.拉格朗日中值定理:设f(x)\begin{cases}[a,b]连续\\(a,b)可导\end{cases}\implies f(b)-f(a)=f'(\xi)(b-a),\exists\xi\in(a,b)\\ &8.柯西中值定理:设f(x),g(x)\begin{cases}[a,b]连续\\(a,b)可导\\g'(x)\not=0\end{cases}\implies\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)},\exists\xi\in(a,b)\\ &9.泰勒公式:\\ &f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\begin{cases}\circ((x=x_0)^n)\\\frac{f^{(n)}(\xi)}{n!}(x-x_0)^{n+1}\end{cases}\\ &麦克劳林公式:f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\begin{cases}\circ(x^n)佩亚诺余项\\\frac{f^{n+1}(\xi)}{(n+1)!}x^{n+1}拉格朗日余项\end{cases}\\ &10.积分中值定理:设f(x)在[a,b]上连续\implies\int_a^bf(x)dx=f(\xi)(b-a),\exists\xi\in[a,b]\\ &\color{grey}{[注]称\begin{cases}\hat f=\frac1{b-a}\int_a^bf(x)dx\\\hat f=\frac1n\sum_{i=1}^nf(x_i)\end{cases}叫f(x)在[a,b]上的平均值} \end{aligned} 设f(x)在[a,b]上连续(涉及函数f(x)的中值定理)1.有界性定理:∣f(x)∣≤k2.最值定理:m≤f(x)≤M3.介值定理:若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ4.零点定理:若f(a),f(b)<0⟹∃ξ∈(a,b),使f(ξ)=0涉及到导数f′(x)的中值定理5.费马定理:设f(x)在x0处{可导取极值⟹f′(x0)=06.罗尔定理:设f(x)⎩⎪⎨⎪⎧[a,b]连续(a,b)可导f(a)=f(b)⟹∃f′(ξ)=0,ξ∈(a,b)7.拉格朗日中值定理:设f(x){[a,b]连续(a,b)可导⟹f(b)−f(a)=f′(ξ)(b−a),∃ξ∈(a,b)8.柯西中值定理:设f(x),g(x)⎩⎪⎨⎪⎧[a,b]连续(a,b)可导g′(x)̸=0⟹g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ),∃ξ∈(a,b)9.泰勒公式:f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+{∘((x=x0)n)n!f(n)(ξ)(x−x0)n+1麦克劳林公式:f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+{∘(xn)佩亚诺余项(n+1)!fn+1(ξ)xn+1拉格朗日余项10.积分中值定理:设f(x)在[a,b]上连续⟹∫abf(x)dx=f(ξ)(b−a),∃ξ∈[a,b][注]称{f^=b−a1∫abf(x)dxf^=n1∑i=1nf(xi)叫f(x)在[a,b]上的平均值
1.确定区间
2.确定辅助函数
3.确定点的值
4.确定所用定理
确定辅助函数
( 1 ) 简 单 情 形 : 题 设 f ( x ) 即 为 辅 助 函 数 ( 2 ) 复 杂 情 形 { 1. 乘 积 求 导 公 式 逆 用 { ( u v ) ′ = u ′ v + u v ′ ( u v ) ′ ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ 2. 商 的 求 导 公 式 逆 用 { 1. ( f ( x ) x ) ′ = f ′ ( x ) x − f ( x ) x 2 2. [ f ′ ( x ) f ( x ) ] ′ = f ′ ′ ( x ) f ( x ) − [ f ′ ( x ) ] 2 f 2 ( x ) 3. [ ln f ( x ) ] ′ ′ = f ′ ′ ( x ) f ( x ) − [ f ′ ( x ) ] 2 f 2 ( x ) 3. 变 现 积 分 : 若 出 现 ∫ a b f ( x ) d x , 可 能 是 令 F ( x ) = ∫ a x f ( t ) d t 4. 若 复 杂 到 作 不 出 辅 助 函 数 , 则 题 设 给 出 F ( x ) 或 F ( a ) , 提 示 考 生 令 其 为 辅 助 函 数 \begin{aligned} (1)&简单情形:题设f(x)即为辅助函数\\ (2)&复杂情形\\ &\begin{cases}1.乘积求导公式逆用\begin{cases}(uv)'=u'v+uv'\\(uv)''=u''v+2u'v'+uv''\end{cases}\\2.商的求导公式逆用\begin{cases}1.(\frac{f(x)}{x})'=\frac{f'(x)x-f(x)}{x^2}\\2.[\frac{f'(x)}{f(x)}]'=\frac{f''(x)f(x)-[f'(x)]^2}{f^2(x)}\\3.[\ln f(x)]''=\frac{f''(x)f(x)-[f'(x)]^2}{f^2(x)}\end{cases}\\3.变现积分:若出现\int_a^bf(x)dx,可能是令F(x)=\int_a^xf(t)dt\\4.若复杂到作不出辅助函数,则题设给出F(x)或F(a),提示考生令其为辅助函数\end{cases} \end{aligned} (1)(2)简单情形:题设f(x)即为辅助函数复杂情形⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧1.乘积求导公式逆用{(uv)′=u′v+uv′(uv)′′=u′′v+2u′v′+uv′′2.商的求导公式逆用⎩⎪⎪⎨⎪⎪⎧1.(xf(x))′=x2f′(x)x−f(x)2.[f(x)f′(x)]′=f2(x)f′′(x)f(x)−[f′(x)]23.[lnf(x)]′′=f2(x)f′′(x)f(x)−[f′(x)]23.变现积分:若出现∫abf(x)dx,可能是令F(x)=∫axf(t)dt4.若复杂到作不出辅助函数,则题设给出F(x)或F(a),提示考生令其为辅助函数
确定使用定理
1. 介 值 定 理 : 证 f ( ξ ) = μ 2. 费 马 定 理 : 证 f ′ ( ξ ) = 0 ( 最 / 极 值 , 区 间 内 ) 3. 罗 尔 定 理 : 证 f ′ ( ξ ) = 0 ( f ( a ) = f ( b ) ) 4. 拉 格 朗 日 : { 1. 题 设 中 有 f , f ′ 得 关 系 , 或 f − f 2. 证 f ( x ) ≥ A 或 f ′ ( ξ ) ≥ A 3. 证 f ( n ) ( ξ ) ≥ A 4. θ 5. 单 调 性 ( f , f ′ ) 5. 泰 勒 : { 1. 题 设 中 有 f 与 f ( n ) , n > 1 的 关 系 2. 证 f ( n ) ( ξ ) ≥ A 6. 柯 西 \begin{aligned} 1.&介值定理:证f(\xi)=\mu\\ 2.&费马定理:证f'(\xi)=0(最/极值,区间内)\\ 3.&罗尔定理:证f'(\xi)=0(f(a)=f(b))\\ 4.&拉格朗日:\begin{cases}1.题设中有f,f'得关系,或f-f\\2.证f(x)\geq A或f'(\xi)\geq A\\3.证f^{(n)}(\xi)\geq A\\4.\theta\\5.单调性(f,f')\end{cases}\\ 5.&泰勒:\begin{cases}1.题设中有f与f^{(n)},n>1的关系\\2.证f^{(n)}(\xi)\geq A\end{cases}\\ 6.&柯西 \end{aligned} 1.2.3.4.5.6.介值定理:证f(ξ)=μ费马定理:证f′(ξ)=0(最/极值,区间内)罗尔定理:证f′(ξ)=0(f(a)=f(b))拉格朗日:⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧1.题设中有f,f′得关系,或f−f2.证f(x)≥A或f′(ξ)≥A3.证f(n)(ξ)≥A4.θ5.单调性(f,f′)泰勒:{1.题设中有f与f(n),n>1的关系2.证f(n)(ξ)≥A柯西
确定点的信息
1. 用 题 设 告 知 , 如 f ( a ) = 0 2. 用 极 限 : { 1. 连 续 定 义 lim x → x 0 f ( x ) = f ( x 0 ) 2. 导 数 定 义 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 3. 保 号 ( 不 等 式 脱 帽 法 ) 4. 取 极 限 3. 用 积 分 : { 1. f ‾ = ∫ a b f ( x ) d x b − a = f ( ξ ) ( 均 值 定 义 ) 2. F ( x ) = ∫ a x f ( t ) d t ( 原 函 数 定 义 ) 3. 保 号 : 若 f ( x ) ≥ 0 不 恒 = 0    ⟹    ∫ a b f ( x ) d x > 0 4. 取 积 分 4. 用 介 值 : f ( a ) = A , f ( b ) = B , A < μ < B    ⟹    f ( ξ ) = μ 5. 用 费 马    ⟹    f ′ ( ξ ) = 0 6. 用 奇 偶    ⟹    { 若 f ( x ) 奇    ⟹    f ( 0 ) = 0 若 f ( x ) 偶    ⟹    f ′ ( x ) 奇    ⟹    f ′ ( 0 ) = 0 7. 用 几 何 : { 1. 存 在 相 等 的 最 大 值 : f ( a ) = f ( b ) 2. f ( x ) 与 g ( x ) 交 于 a 点    ⟹    F ( a ) = f ( a ) − g ( a ) = 0 3. f ( x ) 与 g ( x ) 在 a 点 处 有 公 切 线    ⟹    F ′ ( a ) = f ′ ( a ) − g ′ ( a ) = 0 8. 用 行 列 式 : 如 f ( x ) = ∣ 1 x 4 2 2 x 7 3 3 x 9 ∣    ⟹    f ( 0 ) = 0 , f ( 1 ) = 0    ⟹    罗 尔 定 理 的 f ′ ( ξ ) = 0 \begin{aligned} 1.&用题设告知,如f(a)=0\\ 2.&用极限:\begin{cases}1.连续定义\lim_{x\to x_0}f(x)=f(x_0)\\2.导数定义f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\\3.保号(不等式脱帽法)\\4.取极限\end{cases}\\ 3.&用积分:\begin{cases}1.\overline{f}=\frac{\int_a^bf(x)dx}{b-a}=f(\xi)(均值定义)\\2.F(x)=\int_a^xf(t)dt(原函数定义)\\3.保号:若f(x)\geq0不恒=0\implies\int_a^bf(x)dx>0\\4.取积分\end{cases}\\ 4.&用介值:f(a)=A,f(b)=B,A<\mu<B\implies f(\xi)=\mu\\ 5.&用费马\implies f'(\xi)=0\\ 6.&用奇偶\implies \begin{cases}若f(x)奇\implies f(0)=0\\若f(x)偶\implies f'(x)奇\implies f'(0)=0\end{cases}\\ 7.&用几何:\begin{cases}1.存在相等的最大值:f(a)=f(b)\\2.f(x)与g(x)交于a点\implies F(a)=f(a)-g(a)=0\\3.f(x)与g(x)在a点处有公切线\implies F'(a)=f'(a)-g'(a)=0\end{cases}\\ 8.&用行列式:如f(x)=\begin{vmatrix}1&x&4\\2&2x&7\\3&3x&9\end{vmatrix}\implies f(0)=0,f(1)=0\implies 罗尔定理的f'(\xi)=0\\ \end{aligned} 1.2.3.4.5.6.7.8.用题设告知,如f(a)=0用极限:⎩⎪⎪⎪⎨⎪⎪⎪⎧1.连续定义limx→x0f(x)=f(x0)2.导数定义f′(x0)=limx→x0x−x0f(x)−f(x0)3.保号(不等式脱帽法)4.取极限用积分:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧1.f=b−a∫abf(x)dx=f(ξ)(均值定义)2.F(x)=∫axf(t)dt(原函数定义)3.保号:若f(x)≥0不恒=0⟹∫abf(x)dx>04.取积分用介值:f(a)=A,f(b)=B,A<μ<B⟹f(ξ)=μ用费马⟹f′(ξ)=0用奇偶⟹{若f(x)奇⟹f(0)=0若f(x)偶⟹f′(x)奇⟹f′(0)=0用几何:⎩⎪⎨⎪⎧1.存在相等的最大值:f(a)=f(b)2.f(x)与g(x)交于a点⟹F(a)=f(a)−g(a)=03.f(x)与g(x)在a点处有公切线⟹F′(a)=f′(a)−g′(a)=0用行列式:如f(x)=∣∣∣∣∣∣123x2x3x479∣∣∣∣∣∣⟹f(0)=0,f(1)=0⟹罗尔定理的f′(ξ)=0
例题
[ 例 1 ] 设 l i m x → 0 f ( x ) x = 1 , f ′ ′ ( x ) > 0 , 证 明 f ( x ) ≥ x f ( 0 ) = lim x → 0 f ( x ) = lim x → 0 f ( x ) x = 0 , 且 1 = lim x → 0 f ( x ) − f ( 0 ) x − 0 = f ′ ( 0 ) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( ξ ) 2 ( x − x 0 ) 2 即 f ( x ) = f ( 0 ) + f ′ ( 0 ) ( x − 0 ) + f ′ ′ ( ξ ) 2 ( x − 0 ) 2 f ( x ) = x + ∘ ≥ x [ T h ] 若 f ( x ) 在 x = x 0 处 连 续 且 lim x → x 0 f ( x ) x − x 0 = A , 则 f ( x 0 ) = 0 , f ′ ( x 0 ) = A [ 证 ] f ( x 0 ) = lim x → x 0 f ( x ) = lim x → x 0 f ( x ) x − x 0 ( x − x 0 ) = 0 且 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 = A [ 例 2 ] 设 f ( x ) 在 [ a , b ] 上 连 续 , ( a . b ) 内 可 导 且 f ( a ) ̸ = f ( b ) , 证 明 ∃ ξ , η ∈ ( a , b ) , 使 得 f ′ ( ξ ) 2 ξ = f ′ ( η ) b + a . a > 0 1. f ( b ) − f ( a ) b 2 − a 2 = f ′ ( ξ ) 2 ξ 2. f ( b ) − f ( a ) = f ′ ( η ) ( b − a )    ⟹    f ( b ) − f ( a ) = f ′ ( ξ ) 2 ξ ( b 2 − a 2 ) = f ( b ) − f ( a ) = f ′ ( η ) ( b − a )    ⟹    f ′ ( ξ ) 2 ξ ( b + a ) ( b − a ) = f ′ ( η ) ( b − a ) [ 例 3 ] 设 f ( x ) 在 [ 0 , 4 ] 上 一 阶 可 导 , 且 f ′ ( x ) ≥ 1 4 , f ( 2 ) ≥ 0 , 则 在 [ 3 , 4 ] ‾ 上 必 有 f ( x ) ≥ 1 4 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f ( 3 ) − f ( 2 ) = f ′ ( 3 ) ( 3 − 2 )    ⟹    f ( 3 ) = f ( 2 ) + f ′ ( 3 ) ≥ 1 4 [ 例 4 ] 设 x > 0 , 证 明 ( 1 ) x + 1 − X = 1 2 x + θ ( x ) , 0 < θ ( x ) < 1 , ( 2 ) 求 lim x → + ∞ θ ( x ) ( 1 ) 令 f ( t ) = t , 则 由 拉 氏 定 理 得 x + 1 − x = 1 2 x + θ ( x ) , 其 中 0 < θ ( x ) = ξ − x < 1 ( 2 ) 2 x + θ ( x ) = 1 x + 1 − x = x + 1 + x 4 ( x + θ ( x ) ) = x + 1 + 2 ( x + 1 ) x + x θ ( x ) = x 2 + 1 4 + 1 2 ( x + 1 ) x − x = 1 4 + 1 2 ( x + 1 ) x − x 2 lim x → + ∞ θ ( x ) = 1 4 + 1 2 lim x → + ∞ ( ( x + 1 ) x − x ) = 1 4 + 1 2 lim x → + ∞ 1 ⋅ x ( x + 1 ) x + x = 1 2 [ 例 5 ] 设 f ( x ) = arcsin x , ξ 为 f ( x ) 在 [ 0 , b ] 上 拉 氏 中 值 定 理 得 中 值 点 , 0 < b < 1 , 求 lim b → 0 + ξ b arcsin b − arcsin 0 = 1 1 − b 2 ⋅ b    ⟹    ξ = 1 − ( b arcsin b ) 2 lim b → 0 + ξ b = lim b → 0 + 1 − ( b arcsin b ) 2 b 令 b = sin t 则 I = lim t → 0 + 1 − ( sin t t ) 2 sin t = lim t → 0 + t 2 − ( sin t ) 2 t sin t = lim t → 0 + 1 3 t 2 t 2 = 3 3 \begin{aligned} \ [例1]&\color{maroon}设lim_{x\to0}\frac{f(x)}{x}=1,f''(x)>0,证明f(x)\geq x\\ &f(0)=\lim_{x\to0}f(x)=\lim_{x\to0}\frac{f(x)}x=0,且1=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=f'(0)\\ &f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(\xi)}2(x-x_0)^2\\ &即f(x)=f(0)+f'(0)(x-0)+\frac{f''(\xi)}2(x-0)^2\\ &f(x)=x+\circ\geq x\\ [Th]&若f(x)在x=x_0处连续且\lim_{x\to x_0}\frac{f(x)}{x-x_0}=A,则f(x_0)=0,f'(x_0)=A\\ [证]&f(x_0)=\lim_{x\to x_0}f(x)=\lim_{x\to x_0}\frac{f(x)}{x-x_0}(x-x_0)=0且f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=A\\ [例2]&\color{maroon}设f(x)在[a,b]上连续,(a.b)内可导且f(a)\not=f(b),证明\exists\xi,\eta\in(a,b),使得\frac{f'(\xi)}{2\xi}=\frac{f'(\eta)}{b+a}.a>0\\ &1.\frac{f(b)-f(a)}{b^2-a^2}=\frac{f'(\xi)}{2\xi}\\ &2.f(b)-f(a)=f'(\eta)(b-a)\implies f(b)-f(a)=\frac{f'(\xi)}{2\xi}(b^2-a^2)=f(b)-f(a)=f'(\eta)(b-a)\\ &\implies \frac{f'(\xi)}{2\xi}(b+a)(b-a)=f'(\eta)(b-a)\\ [例3]&\color{maroon}设f(x)在[0,4]上一阶可导,且f'(x)\geq\frac14,f(2)\geq0,则在\underline{[3,4]}上必有f(x)\geq\frac14\\ &f(b)-f(a)=f'(\xi)(b-a)\\ &f(3)-f(2)=f'(3)(3-2)\implies f(3)=f(2)+f'(3)\geq\frac14\\ [例4]&\color{maroon}设x>0,证明(1)\sqrt{x+1}-\sqrt{X}=\frac{1}{2\sqrt{x+\theta(x)}},0<\theta(x)<1,(2)求\lim_{x\to+\infty}\theta(x)\\ (1)&令f(t)=\sqrt t,则由拉氏定理得\\ &\sqrt{x+1}-\sqrt x=\frac1{2\sqrt{x+\theta(x)}},其中0<\theta(x)=\xi-x<1\\ (2)&2\sqrt{x+\theta(x)}=\frac1{\sqrt{x+1}-\sqrt{x}}=\sqrt{x+1}+\sqrt{x}\\ &4(x+\theta(x))=x+1+2\sqrt{(x+1)x}+x\\ &\theta(x)=\frac{x}2+\frac14+\frac12\sqrt{(x+1)x}-x=\frac14+\frac12\sqrt{(x+1)x}-\frac{x}2\\ &\lim_{x\to+\infty}\theta(x)=\frac14+\frac12\lim_{x\to+\infty}(\sqrt{(x+1)x}-x)=\frac14+\frac12\lim_{x\to+\infty}\frac{1\cdot x}{\sqrt{(x+1)x}+x}=\frac12\\ [例5]&\color{maroon}设f(x)=\arcsin x,\xi为f(x)在[0,b]上拉氏中值定理得中值点,0< b<1,求\lim_{b\to0^+}\frac{\xi}{b}\\ &\arcsin b-\arcsin0=\frac{1}{\sqrt{1-b^2}}\cdot b\implies \xi=\sqrt{1-(\frac{b}{\arcsin b})^2}\\ &\lim_{b\to0^+}\frac{\xi}{b}=\lim_{b\to0^+}\frac{\sqrt{1-(\frac{b}{\arcsin b})^2}}{b}\\ &令b=\sin t则I=\lim_{t\to0^+}\frac{\sqrt{1-(\frac{\sin t}{t})^2}}{\sin t}=\lim_{t\to0^+}\frac{\sqrt{t^2-(\sin t)^2}}{t\sin t}=\lim_{t\to0^+}\frac{\frac1{\sqrt3}t^2}{t^2}=\frac{\sqrt3}{3}\\ \end{aligned} [例1][Th][证][例2][例3][例4](1)(2)[例5]设limx→0xf(x)=1,f′′(x)>0,证明f(x)≥xf(0)=x→0limf(x)=x→0limxf(x)=0,且1=x→0limx−0f(x)−f(0)=f′(0)f(x)=f(x0)+f′(x0)(x−x0)+2f′′(ξ)(x−x0)2即f(x)=f(0)+f′(0)(x−0)+2f′′(ξ)(x−0)2f(x)=x+∘≥x若f(x)在x=x0处连续且x→x0limx−x0f(x)=A,则f(x0)=0,f′(x0)=Af(x0)=x→x0limf(x)=x→x0limx−x0f(x)(x−x0)=0且f′(x0)=x→x0limx−x0f(x)−f(x0)=A设f(x)在[a,b]上连续,(a.b)内可导且f(a)̸=f(b),证明∃ξ,η∈(a,b),使得2ξf′(ξ)=b+af′(η).a>01.b2−a2f(b)−f(a)=2ξf′(ξ)2.f(b)−f(a)=f′(η)(b−a)⟹f(b)−f(a)=2ξf′(ξ)(b2−a2)=f(b)−f(a)=f′(η)(b−a)⟹2ξf′(ξ)(b+a)(b−a)=f′(η)(b−a)设f(x)在[0,4]上一阶可导,且f′(x)≥41,f(2)≥0,则在[3,4]上必有f(x)≥41f(b)−f(a)=f′(ξ)(b−a)f(3)−f(2)=f′(3)(3−2)⟹f(3)=f(2)+f′(3)≥41设x>0,证明(1)x+1−X=2x+θ(x)1,0<θ(x)<1,(2)求x→+∞limθ(x)令f(t)=t,则由拉氏定理得x+1−x=2x+θ(x)1,其中0<θ(x)=ξ−x<12x+θ(x)=x+1−x1=x+1+x4(x+θ(x))=x+1+2(x+1)x+xθ(x)=2x+41+21(x+1)x−x=41+21(x+1)x−2xx→+∞limθ(x)=41+21x→+∞lim((x+1)x−x)=41+21x→+∞lim(x+1)x+x1⋅x=21设f(x)=arcsinx,ξ为f(x)在[0,b]上拉氏中值定理得中值点,0<b<1,求b→0+limbξarcsinb−arcsin0=1−b21⋅b⟹ξ=1−(arcsinbb)2b→0+limbξ=b→0+limb1−(arcsinbb)2令b=sint则I=t→0+limsint1−(tsint)2=t→0+limtsintt2−(sint)2=t→0+limt231t2=33