【数学】一元函数微分(宇哥笔记)

本文深入探讨了一元函数微分学的核心概念,包括导数与微分的定义及应用,通过实例解析导数的几何意义和证明性应用,涵盖了从基本求导公式到高阶导数的全面讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一元函数微分学

在这里插入图片描述

导数\微分定义及其考法

定义

导数定义

假 设 一 个 普 通 教 室 在 t = 9 : 00 时 为 u = 2 0 ∘ C , t ˇ = 9 : 05 时 教 室 的 温 度 u ˇ = 2 5 ∘ C 问 教 室 里 的 温 度 在 这 5 m i n 中 的 平 均 变 化 率 是 多 少 ? 很 明 显 Δ u Δ t = 1 ∘ C / m i n , 但 是 把 时 间 变 成 今 天 与 一 年 前 的 今 天 , 温 度 相 同 都 是 2 0 ∘ C 用 刚 才 的 方 法 来 算 其 平 均 变 化 率 就 成 了 0 , 很 显 然 这 个 结 果 不 能 描 述 实 际 情 况 如 果 我 们 令 Δ t → 0 , 我 们 就 能 求 某 时 刻 的 瞬 时 变 化 率 , 如 下 : f ′ ( x ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x    瞬 时 变 化 率 [ 注 1 ] 换 元 , 令 x 0 + Δ x = x , 则 f ′ ( x 0 ) = lim ⁡ Δ x → x 0 f ( x ) − f ( x 0 ) x − x 0 [ 注 2 ] 左 右 导 数 , f + ′ ( x ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x 右 导 数 , f − ′ ( x ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x 左 导 数 [ 注 3 ] 导 数 存 在 的 条 件 , f ′ ( x 0 ) ∃    ⟺    f + ′ ( x 0 ) = f − ′ ( x 0 ) \begin{aligned} &假设一个普通教室在t=9:00时为u=20^\circ C,\check t=9:05时教室的温度\check u=25^\circ C\\ &问教室里的温度在这5min中的平均变化率是多少?\\ &很明显\frac{\Delta u}{\Delta t}=1^\circ C/min,但是把时间变成今天与一年前的今天,温度相同都是20^\circ C\\ &用刚才的方法来算其平均变化率就成了0,很显然这个结果不能描述实际情况\\ &如果我们令\Delta t\to0,我们就能求某时刻的瞬时变化率,如下:\\ &\color{red}{f'(x)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\ \ 瞬时变化率}\\ &\color{grey}[注1]换元,令x_0+\Delta x=x,则f'(x_0)=\lim_{\Delta x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\\ &\color{grey}[注2]左右导数,f_+'(x)=\lim_{\Delta x\to0^+}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}右导数,f_-'(x)=\lim_{\Delta x\to0_-}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}左导数\\ &\color{grey}[注3]导数存在的条件,f'(x_0)\exists\iff f'_+(x_0)=f'_-(x_0) \end{aligned} t=9:00u=20C,tˇ=9:05uˇ=25C5minΔtΔu=1C/min20C0Δt0,f(x)=Δx0limΔxf(x0+Δx)f(x0)  [1]x0+Δx=x,f(x0)=Δxx0limxx0f(x)f(x0)[2]f+(x)=Δx0+limΔxf(x0+Δx)f(x0)f(x)=Δx0limΔxf(x0+Δx)f(x0)[3]f(x0)f+(x0)=f(x0)

微分定义

幂 的 微 分 { d ( x 2 ) = 2 x d x d ( x n ) = n x n − 1 d x 微 分 的 幂 { d x 2 = ( d x ) 2 d x n = ( d x ) n d y = y ′ d x \begin{aligned} &幂的微分\begin{cases}d(x^2)=2xdx\\d(x^n)=nx^{n-1}dx\end{cases}\\ &微分的幂\begin{cases}dx^2=(dx)^2\\dx^n=(dx)^n\end{cases}\\ &dy=y'dx \end{aligned} {d(x2)=2xdxd(xn)=nxn1dx{dx2=(dx)2dxn=(dx)ndy=ydx

[外链图片转存失败(img-bCNaeZ06-1562482602646)(D:\文字\公众号\考研\数学\张宇高数十八讲\4.一元函数微分\图.png)]
如 上 图 所 示 , f ( x ) = x 2 f ( x + Δ x ) = ( x + Δ x ) 2 = x 2 + 2 x Δ x + ( Δ x ) 2 令 Δ y = f ( x + Δ x ) − f ( x ) = 2 x Δ x + ( Δ x ) 2 Δ y = y ′ ( x ) ⋅ Δ x + ∘ ( Δ x ) , 则 y ′ ( x ) ⋅ Δ x = d y 称 为 线 性 全 部 ∴ Δ x = 1 ⋅ Δ x + 0    ⟹    d x = Δ x    ⟹    d y = y ′ ( x ) d x    ⟹    d y d x = y ′ ( x ) \begin{aligned} &如上图所示,f(x)=x^2\quad f(x+\Delta x)=(x+\Delta x)^2=x^2+2x\Delta x+(\Delta x)^2\\ &令\Delta y=f(x+\Delta x)-f(x)=2x\Delta x+(\Delta x)^2\\ &\Delta y=y'(x)\cdot\Delta x+\circ(\Delta x),则y'(x)\cdot\Delta x=dy称为线性全部\\ &\therefore \Delta x=1\cdot\Delta x+0\implies dx=\Delta x\\ &\implies dy=y'(x)dx\implies \frac{dy}{dx}=y'(x)\\ \end{aligned} f(x)=x2f(x+Δx)=(x+Δx)2=x2+2xΔx+(Δx)2Δy=f(x+Δx)f(x)=2xΔx+(Δx)2Δy=y(x)Δx+(Δx),y(x)Δx=dy线Δx=1Δx+0dx=Δxdy=y(x)dxdxdy=y(x)

  [ 例 1 ] 设 y = e x 2 , 求 d y d x , d y d ( x 2 ) , d 2 y d x 2 d y d x = y ′ = e x 2 ⋅ 2 x d 2 y d x 2 = y ′ ′ = e x 2 ⋅ 4 x 2 + e x 2 ⋅ 2 d y d ( x 2 ) = e x 2 ⋅ 2 x d x 2 x d x = e x 2 d y 2 x d x = 1 2 x ⋅ e x 2 ⋅ 2 x = e x 2 [ 例 2 ] y = f ( x ) , f ′ ( x 0 ) = 1 2 , Δ x → 0 时 , y = f ( x ) 在 x = x 0 处 得 微 分 d y 与 Δ x 是 ( 同 阶 非 等 价 ) d y = y ′ ( x 0 ) d x = 1 2 d x = 1 2 Δ x lim ⁡ Δ x → 0 d x Δ x = lim ⁡ Δ x → 0 1 2 Δ x Δ x = 1 2 [ 例 3 ] 设 f ( x ) = ( cos ⁡ x − 4 ) sin ⁡ x + 3 x , 求 d f ( x ) d ( x 2 ) d f ( a ) = f ′ ( x ) d x = ( − sin ⁡ 2 x + ( cos ⁡ x − 4 ) ⋅ cos ⁡ x + 3 ) d x d ( x 2 ) = 2 x d x ∴ d f ( x ) d ( x 2 ) = − sin ⁡ 2 x + ( cos ⁡ x − 4 ) cos ⁡ x + 3 2 x = ( cos ⁡ x − 1 ) 2 x [ 例 4 ] 设 f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , 求 证 : 在 x = 0 处 , 有 d 2 d x 2 f ( x 2 ) = d 2 d x 2 f 2 ( x ) y 1 ′ = f ′ ( x 2 ) ⋅ 2 x , y 1 ′ ′ ∣ 0 = f ′ ′ ( x 2 ) ⋅ 2 x ⋅ 2 x + f ′ ( x 2 ) ⋅ 2 ∣ x = 0 = 2 y 2 ′ = 2 f ( x ) ⋅ f ′ ( x ) , y 2 ′ ′ ∣ 0 = 2 f ′ ( x ) f ′ ( x ) + 2 f ( x ) f ′ ′ ( x ) ∣ x = 0 = 2 \begin{aligned} \ [例1]&\color{maroon}设y=e^{x^2},求\frac{dy}{dx},\frac{dy}{d(x^2)},\frac{d^2y}{dx^2}\\ &\frac{dy}{dx}=y'=e^{x^2}\cdot2x\\ &\frac{d^2y}{dx^2}=y^{''}=e^{x^2}\cdot4x^2+e^{x^2}\cdot2\\ &\frac{dy}{d(x^2)}=\frac{e^{x^2}\cdot2xdx}{2xdx}=e^{x^2}\qquad\frac{dy}{2xdx}=\frac1{2x}\cdot e^{x^2}\cdot2x=e^{x^2}\\ [例2]&\color{maroon}y=f(x),f'(x_0)=\frac12,\Delta x\to0时,y=f(x)在x=x_0处得微分dy与\Delta x是(同阶非等价)\\ &dy=y'(x_0)dx=\frac12dx=\frac12\Delta x\\ &\lim_{\Delta x\to0}\frac{dx}{\Delta x}=\lim_{\Delta x\to0}\frac{\frac12\Delta x}{\Delta x}=\frac12\\ [例3]&\color{maroon}设f(x)=(\cos x-4)\sin x+3x,求\frac{df(x)}{d(x^2)}\\ &df(a)=f'(x)dx=(-\sin^2x+(\cos x-4)\cdot\cos x+3)dx\\ &d(x^2)=2xdx\\ \therefore & \frac{df(x)}{d(x^2)}=\frac{-\sin^2x+(\cos x-4)\cos x+3}{2x}=\frac{(\cos x-1)^2}{x}\\ [例4]&\color{maroon}设f'(0)=1,f''(0)=0,求证:在x=0处,有\frac{d^2}{dx^2}f(x^2)=\frac{d^2}{dx^2}f^2(x)\\ &y_1'=f'(x^2)\cdot2x,y_1^{''}|_0=f''(x^2)\cdot2x\cdot2x+f'(x^2)\cdot2|_{x=0}=2\\ &y_2'=2f(x)\cdot f'(x),y_2^{''}|_0=2f'(x)f'(x)+2f(x)f''(x)|_{x=0}=2\\ \end{aligned}  [1][2][3][4]y=ex2,dxdy,d(x2)dy,dx2d2ydxdy=y=ex22xdx2d2y=y=ex24x2+ex22d(x2)dy=2xdxex22xdx=ex22xdxdy=2x1ex22x=ex2y=f(x),f(x0)=21,Δx0,y=f(x)x=x0dyΔx()dy=y(x0)dx=21dx=21ΔxΔx0limΔxdx=Δx0limΔx21Δx=21f(x)=(cosx4)sinx+3x,d(x2)df(x)df(a)=f(x)dx=(sin2x+(cosx4)cosx+3)dxd(x2)=2xdxd(x2)df(x)=2xsin2x+(cosx4)cosx+3=x(cosx1)2f(0)=1,f(0)=0,x=0dx2d2f(x2)=dx2d2f2(x)y1=f(x2)2x,y10=f(x2)2x2x+f(x2)2x=0=2y2=2f(x)f(x),y20=2f(x)f(x)+2f(x)f(x)x=0=2

考法

抽象函数在一点(泛指x与特指x)

  [ 例 1 ] 证 明 : 若 f ( x ) 可 导 且 为 偶 函 数 , 请 推 f ′ ( x ) 为 奇 函 数 [ 分 析 ] 已 知 f ( x ) = f ( − x ) ∴ f ′ ( − x ) = lim ⁡ Δ x → 0 f ( − x + Δ x ) − f ( − x ) Δ x = − lim ⁡ − Δ x → 0 f ( x + ( − Δ x ) ) − f ( x ) − Δ x = − f ′ ( x ) [ 例 2 ] 证 明 f ( x ) 可 导 , 周 期 为 T , 请 推 f ′ ( x ) 的 周 期 也 是 T [ 分 析 ] 已 知 f ( x + T ) = f ( x ) ∴ f ′ ( x + T ) = lim ⁡ Δ x → 0 f ( x + T + Δ x ) − f ( x + T ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = f ′ ( x ) [ 例 3 ] f ( x ) 二 阶 可 导 , T = 2 , 奇 函 数 , 且 f ( 1 2 ) &gt; 0 , f ′ ( x ) &gt; 0 , 比 较 f ( − 1 2 ) , f ′ ( 3 2 ) , f ′ ′ ( 0 ) 的 大 小 ∵ 该 函 数 为 奇 函 数 ∴ f ( − x ) = − f ( x ) → f ( − 1 2 ) = − f ( 1 2 ) &lt; 0 ∵ f ( x ) : T = 2 ∴ f ′ ( x ) : T = 2 且 f ′ ( x ) 为 偶 函 数 ∴ f ′ ( 3 2 ) = f ′ ( 3 2 − 2 ) = f ′ ( − 1 2 ) = f ′ ( 1 2 ) &gt; 0 ∴ f ′ ′ ( x ) 为 奇 函 数 即 : f ′ ′ ( 0 ) = 0 得 f ( − 1 2 ) &lt; f ′ ′ ( 0 ) &lt; f ′ ( 3 2 ) [ 例 4 ] y = f ( x ) 与 y = ∫ 0 arctan ⁡ x e − t 2 d t 在 ( 0 , 0 ) 处 切 线 相 同 , 写 出 切 线 方 程 , 求 lim ⁡ n → ∞ n f ( 2 n ) [ 分 析 ] f ′ ( x 0 ) = k , 切 线 方 程 为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) ( ∫ 0 arctan ⁡ x e − t 2 d t ) x ′ = e − ( arctan ⁡ x ) 2 ⋅ 1 1 + x 2 , 令 x = 0 , 则 f ′ ( 0 ) = 1 , 故 切 线 方 程 为 y = x ∴ lim ⁡ n → ∞ n f ( 2 n ) = 2 lim ⁡ 2 n → 0 + f ( 0 + 2 n ) − f ( 0 ) 2 n = 2 ⋅ f ′ ( 0 ) = 2 [ 例 5 ] 设 f ′ ( 1 ) = 1 , 则 lim ⁡ x → 1 f ( x ) − f ( 1 ) x 10 − 1 = ‾ a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) I = lim ⁡ x → 1 f ( x ) − f ( 1 ) ( x − 1 ) ( x 9 + x 8 + ⋯ + x + 1 ) = f ′ ( 1 ) ⋅ 1 10 = 1 10 [ 注 ] f ′ ( x ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x [ 例 6 ] 设 f ( x ) 在 ( − ∞ , + ∞ ) 内 有 定 义 ( 存 在 ) 且 ∀ x , x 1 , x 2 ∈ ( − ∞ , + ∞ ) , 有 f ( x 1 + x 2 ) = f ( x 1 ) ⋅ f ( x 2 ) , f ( x ) = 1 + x g ( x ) , lim ⁡ x → 0 g ( x ) = 1 , 证 明 f ( x ) 在 ( − ∞ , + ∞ ) 内 处 处 可 导 f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 f ( x ) ⋅ f ( Δ x ) − f ( x ) Δ x = f ( x ) lim ⁡ Δ x → 0 f ( Δ x ) − 1 Δ x = f ( x ) lim ⁡ Δ x → 0 1 + Δ x g ( Δ x ) − 1 Δ x = f ( x ) &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) 处 处 存 在 &ThickSpace; ⟺ &ThickSpace; f ( x ) 处 处 可 导 \begin{aligned} \ [例1]&amp;\color{maroon}{证明:若f(x)可导且为偶函数,请推f&#x27;(x)为奇函数}\\ &amp;\color{black}[分析]已知f(x)=f(-x)\\ &amp;\therefore f&#x27;(-x)=\lim_{\Delta x\to0}\frac{f(-x+\Delta x)-f(-x)}{\Delta x}=-\lim_{-\Delta x\to0}\frac{f(x+(-\Delta x))-f(x)}{-\Delta x}=-f&#x27;(x)\\ [例2]&amp;\color{maroon}{证明f(x)可导,周期为T,请推f&#x27;(x)的周期也是T}\\ &amp;\color{black}[分析]已知f(x+T)=f(x)\\ &amp;\therefore f&#x27;(x+T)=\lim_{\Delta x\to0}\frac{f(x+T+\Delta x)-f(x+T)}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=f&#x27;(x)\\ [例3]&amp;\color{maroon}{f(x)二阶可导,T=2,奇函数,且f(\frac12)&gt;0,f&#x27;(x)&gt;0,比较f(-\frac12),f&#x27;(\frac32),f&#x27;&#x27;(0)的大小}\\ &amp;\color{black}\because该函数为奇函数\therefore f(-x)=-f(x)\rightarrow f(-\frac12)=-f(\frac12)&lt;0\\ &amp;\because f(x):T=2 \therefore f&#x27;(x):T=2且f&#x27;(x)为偶函数\\ &amp;\therefore f&#x27;(\frac32)=f&#x27;(\frac32-2)=f&#x27;(-\frac12)=f&#x27;(\frac12)&gt;0\\ &amp;\therefore f&#x27;&#x27;(x)为奇函数\quad 即:f&#x27;&#x27;(0)=0\\ &amp;得f(-\frac12)&lt;f&#x27;&#x27;(0)&lt;f&#x27;(\frac32)\\ [例4]&amp;\color{maroon}{y=f(x)与y=\int_0^{\arctan x}e^{-t^2}dt在(0,0)处切线相同,写出切线方程,求\lim_{n\to\infty}nf(\frac2n)}\\ &amp;\color{black}[分析]f&#x27;(x_0)=k,切线方程为y-y_0=f&#x27;(x_0)(x-x_0)\\ &amp;(\int_0^{\arctan x}e^{-t^2}dt)&#x27;_x=e^{-(\arctan x)^2}\cdot\frac{1}{1+x^2},令x=0,则f&#x27;(0)=1,故切线方程为y=x\\ &amp;\therefore\lim_{n\to\infty}nf(\frac2n)=2\lim_{\frac2n\to0^+}\frac{f(0+\frac2n)-f(0)}{\frac2n}=2\cdot f&#x27;(0)=2\\ [例5]&amp;\color{maroon}{设f&#x27;(1)=1,则\lim_{x\to1}\frac{f(x)-f(1)}{x^{10}-1}}=\underline{\quad}\\ &amp;a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1})\\ &amp;I=\lim_{x\to1}\frac{f(x)-f(1)}{(x-1)(x^9+x^8+\cdots+x+1)}=f&#x27;(1)\cdot\frac1{10}=\frac1{10}\\ [注]&amp;f&#x27;(x)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\ [例6]&amp;\color{maroon}{设f(x)在(-\infty,+\infty)内有定义(存在)且\forall x,x_1,x_2\in(-\infty,+\infty),}\\ &amp;\color{maroon}有f(x_1+x_2)=f(x_1)\cdot f(x_2),f(x)=1+xg(x),\lim_{x\to0}g(x)=1,证明f(x)在(-\infty,+\infty)内处处可导\\ &amp;f&#x27;(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x)\cdot f(\Delta x)-f(x)}{\Delta x}\\ &amp;=f(x)\lim_{\Delta x\to0}\frac{f(\Delta x)-1}{\Delta x}=f(x)\lim_{\Delta x\to0}\frac{1+\Delta xg(\Delta x)-1}{\Delta x}=f(x)\\ &amp;\implies f&#x27;(x)处处存在\iff f(x)处处可导\\ \end{aligned}  [1][2][3][4][5][][6]f(x)f(x)[]f(x)=f(x)f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxf(x+(Δx))f(x)=f(x)f(x)Tf(x)T[]f(x+T)=f(x)f(x+T)=Δx0limΔxf(x+T+Δx)f(x+T)=Δx0limΔxf(x+Δx)f(x)=f(x)f(x)T=2f(21)>0,f(x)>0,f(21),f(23),f(0)f(x)=f(x)f(21)=f(21)<0f(x):T=2f(x):T=2f(x)f(23)=f(232)=f(21)=f(21)>0f(x):f(0)=0f(21)<f(0)<f(23)y=f(x)y=0arctanxet2dt(0,0)线线nlimnf(n2)[]f(x0)=k,线yy0=f(x0)(xx0)(0arctanxet2dt)x=e(arctanx)21+x21,x=0,f(0)=1,线y=xnlimnf(n2)=2n20+limn2f(0+n2)f(0)=2f(0)=2f(1)=1,x1limx101f(x)f(1)=anbn=(ab)(an1+an2b++abn2+bn1)I=x1lim(x1)(x9+x8++x+1)f(x)f(1)=f(1)101=101f(x)=xx0limxx0f(x)f(x0)=Δx0limΔxf(x0+Δx)f(x0)f(x)(,+)()x,x1,x2(,+),f(x1+x2)=f(x1)f(x2),f(x)=1+xg(x),x0limg(x)=1,f(x)(,+)f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxf(x)f(Δx)f(x)=f(x)Δx0limΔxf(Δx)1=f(x)Δx0limΔx1+Δxg(Δx)1=f(x)f(x)f(x)

分段函数在分段点(常见绝对值函数)

  [ 例 1 ] 设 f ( x ) 在 x = a 处 连 续 , F ( x ) = f ( x ) ⋅ ∣ x − a ∣ , 证 明 F ( x ) 在 x = a 处 可 导 的 充 要 条 件 为 f ( a ) = 0 ( 背 过 ) [ 分 析 ] F ( x ) = { − ( x − a ) f ( x ) , x &lt; a 0 , x = a ( x − a ) f ( x ) , x &gt; a F − ′ ( x ) = lim ⁡ x → a − F ( x ) − F ( a ) x − a = lim ⁡ x → a − − ( x − a ) f ( x ) − 0 x − a = − lim ⁡ x → a − f ( x ) = − f ( a ) F + ′ ( x ) = lim ⁡ x → a + F ( x ) − F ( a ) x − a = lim ⁡ x → a + ( x − a ) f ( x ) − 0 x − a = lim ⁡ x → a + f ( x ) = f ( a ) F ′ ( a ) ∃ &ThickSpace; ⟺ &ThickSpace; F − ′ ( a ) = F + ′ ( a ) &ThickSpace; ⟺ &ThickSpace; f ( a ) = 0 [ 例 2 ] 设 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ , 求 f ′ ( 0 ) , f ′ ( 1 ) f ( x ) = { − x e x − 1 , x &lt; 0 x e x − 1 , 0 ≤ x &lt; 1 x e 1 − x , x ≥ 1 f + ′ ( 0 ) = ( e x − 1 + x e x − 1 ) ∣ x = 0 = e − 1 , 再 求 f − ′ ( 0 ) = − e − 1 , 即 f ′ ( 0 ) 不 存 在 f ′ ( 1 ) = ( e 1 − x − x e 1 − x ) ∣ x = 1 = 1 − 1 = 0 同 理 , 得 f − ′ ( 1 ) = 2 , f + ′ ( 1 ) = 0 &ThickSpace; ⟹ &ThickSpace; f ′ ( 1 ) 不 存 在 \begin{aligned} \ [例1]&amp;\color{maroon}{设f(x)在x=a处连续,F(x)=f(x)\cdot|x-a|,证明F(x)在x=a处可导的充要条件为f(a)=0(背过)}\\ &amp;\color{black}[分析]F(x)=\begin{cases}-(x-a)f(x),x&lt; a\\0,x=a\\(x-a)f(x),x&gt;a\end{cases}\\ &amp;F&#x27;_-(x)=\lim_{x\to a^-}\frac{F(x)-F(a)}{x-a}=\lim_{x\to a^-}\frac{-(x-a)f(x)-0}{x-a}=-\lim_{x\to a^-}f(x)=-f(a)\\ &amp;F&#x27;_+(x)=\lim_{x\to a^+}\frac{F(x)-F(a)}{x-a}=\lim_{x\to a^+}\frac{(x-a)f(x)-0}{x-a}=\lim_{x\to a^+}f(x)=f(a)\\ &amp;F&#x27;(a)\exists\iff F&#x27;_-(a)=F&#x27;_+(a)\iff f(a)=0\\ [例2]&amp;\color{maroon}{设f(x)=\mid x\mid e^{-\mid x-1\mid},求f&#x27;(0),f&#x27;(1)}\\ &amp;f(x)=\begin{cases}-xe^{x-1},x&lt;0\\xe^{x-1},0\leq x&lt;1\\xe^{1-x},x\geq1\end{cases}\\ &amp;f_+&#x27;(0)=(e^{x-1}+xe^{x-1})|_{x=0}=e^{-1},再求f_{-}&#x27;(0)=-e^{-1},即f&#x27;(0)不存在\\ &amp;f&#x27;(1)=(e^{1-x}-xe^{1-x})|_{x=1}=1-1=0\\ &amp;同理,得f_-&#x27;(1)=2,f_+&#x27;(1)=0\implies f&#x27;(1)不存在\\ \end{aligned}  [1][2]f(x)x=aF(x)=f(x)xa,F(x)x=af(a)=0()[]F(x)=(xa)f(x),x<a0,x=a(xa)f(x),x>aF(x)=xalimxaF(x)F(a)=xalimxa(xa)f(x)0=xalimf(x)=f(a)F+(x)=xa+limxaF(x)F(a)=xa+limxa(xa)f(x)0=xa+limf(x)=f(a)F(a)F(a)=F+(a)f(a)=0f(x)=xex1,f(0),f(1)f(x)=xex1,x<0xex1,0x<1xe1x,x1f+(0)=(ex1+xex1)x=0=e1,f(0)=e1,f(0)f(1)=(e1xxe1x)x=1=11=0f(1)=2,f+(1)=0f(1)

四则运算(不太复杂的点与不成立的点)

[ 例 1 ] f ( x ) = 2 1 + x + arcsin ⁡ 1 − x 1 + x 2 , f ′ ( 1 ) = ? 设 f 1 = 2 1 + x , f 2 = arcsin ⁡ 1 − x 1 + x 2 f 1 ′ ( 1 ) = 2 2 , f 2 ( 1 ) = lim ⁡ x → 1 f 2 ( x ) − f 2 ( 1 ) x − 1 = lim ⁡ x → 1 arcsin ⁡ 1 − x 1 + x 2 − 0 x − 1 = − 1 2 故 f ′ ( 1 ) = 2 2 − 1 2 [ 例 2 ] f ( x ) = ∏ n = 1 100 ( tan ⁡ π x n 4 − n ) , 则 f ′ ( 1 ) = ? f ( x ) = ( tan ⁡ π x 4 − 1 ) ( tan ⁡ π x 2 4 − 2 ) … ( tan ⁡ π x 100 4 − 100 ) 令 g ( x ) = ( tan ⁡ π x 2 4 − 2 ) … ( tan ⁡ π x 100 4 − 100 ) &ThickSpace; ⟹ &ThickSpace; f ( x ) = ( tan ⁡ π x 4 − 1 ) ⋅ g ( x ) f ′ ( 1 ) = π 4 sec ⁡ 2 π 4 ⋅ g ( 1 ) + ( tan ⁡ π 4 − 1 ) g ′ ( 1 ) = − π 2 ⋅ 99 ! [ 例 3 ] f ( x ) = e 10 x ⋅ x ( x + 1 ) ( x + 2 ) … ( x + 10 ) , 求 f ′ ( 0 ) 令 g ( x ) = e 10 x ⋅ ( x + 1 ) ( x + 2 ) … ( x + 10 ) , 则 f ( x ) = x ⋅ g ( x ) f ′ ( x ) = g ( x ) + x ⋅ g ′ ( x ) = 10 ! [ 例 4 ] f ( x ) = x 2 3 sin ⁡ x , 求 f ′ ( x ) 1. x ≠ 0 时 , f ′ ( x ) = ( x 2 3 ⋅ sin ⁡ x ) ′ = 2 3 x − 1 3 sin ⁡ x + x 2 3 ⋅ cos ⁡ x 2. x = 0 时 , f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 x 2 3 sin ⁡ x x = lim ⁡ x → 0 x 2 3 = 0 故 f ′ ( x ) = { 2 3 1 x 3 sin ⁡ x + x 2 3 ⋅ cos ⁡ x , x ≠ 0 0 , x = 0 [ 注 ] ( u , v ) ′ = u ′ v + u v ′ 需 两 者 处 处 可 导 , 而 x 2 3 并 非 处 处 可 导 \begin{aligned} &amp;\color{maroon}{[例1]f(x)=2\sqrt{1+x}+\arcsin\frac{1-x}{1+x^2},f&#x27;(1)=?}\\ &amp;\color{black}设f_1=2\sqrt{1+x},f_2=\arcsin\frac{1-x}{1+x^2}\\ &amp;f&#x27;_1(1)=\frac{\sqrt2}2,f_2(1)=\lim_{x\to1}\frac{f_2(x)-f_2(1)}{x-1}=\lim_{x\to1}\frac{\arcsin\frac{1-x}{1+x^2}-0}{x-1}=-\frac12\\ &amp;故f&#x27;(1)=\frac{\sqrt2}2-\frac12\\ &amp;\color{maroon}{[例2]f(x)=\prod}_{n=1}^{100}(\tan\frac{\pi x^n}4-n),则f&#x27;(1)=?\\ &amp;\color{black}f(x)=(\tan\frac{\pi x}4-1)(\tan\frac{\pi x^2}4-2)\ldots(\tan\frac{\pi x^{100}}4-100)\\ &amp;令g(x)=(\tan\frac{\pi x^2}4-2)\ldots(\tan\frac{\pi x^{100}}4-100)\implies f(x)=(\tan\frac{\pi x}4-1)\cdot g(x)\\ &amp;f&#x27;(1)=\frac\pi4 \sec^2\frac{\pi}4\cdot g(1)+(\tan\frac{\pi}4-1)g&#x27;(1)=-\frac\pi2\cdot99!\\ &amp;\color{maroon}{[例3]f(x)=e^{10x}\cdot x(x+1)(x+2)\ldots(x+10),求f&#x27;(0)}\\ &amp;\color{black}令g(x)=e^{10x}\cdot(x+1)(x+2)\ldots(x+10),则f(x)=x\cdot g(x)\\ &amp;f&#x27;(x)=g(x)+x\cdot g&#x27;(x)=10!\\ &amp;\color{maroon}{[例4]f(x)=\sqrt[3]{x^2}\sin x,求f&#x27;(x)}\\ &amp;\color{black}1.x\neq0时,f&#x27;(x)=(x^{\frac23}\cdot \sin x)&#x27;=\frac23x^{-\frac13}\sin x+x^{\frac23}\cdot \cos x\\ &amp;2.x=0时,f&#x27;(0)=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0}\frac{x^\frac23\sin x}{x}=\lim_{x\to0}x^\frac23=0\\ &amp;故f&#x27;(x)=\begin{cases}\frac23\frac1{\sqrt[3]{x}}\sin x+x^\frac23\cdot \cos x,x\neq0\\0,x=0\end{cases}\\ &amp;[注](u,v)&#x27;=u&#x27;v+uv&#x27;需两者处处可导,而x^{\frac23}并非处处可导\\ \end{aligned} [1]f(x)=21+x +arcsin1+x21x,f(1)=?f1=21+x ,f2=arcsin1+x21xf1(1)=22 ,f2(1)=x1limx1f2(x)f2(1)=x1limx1arcsin1+x21x0=21f(1)=22 21[2]f(x)=n=1100(tan4πxnn)f(1)=?f(x)=(tan4πx1)(tan4πx22)(tan4πx100100)g(x)=(tan4πx22)(tan4πx100100)f(x)=(tan4πx1)g(x)f(1)=4πsec24πg(1)+(tan4π1)g(1)=2π99![3]f(x)=e10xx(x+1)(x+2)(x+10),f(0)g(x)=e10x(x+1)(x+2)(x+10),f(x)=xg(x)f(x)=g(x)+xg(x)=10![4]f(x)=3x2 sinx,f(x)1.x̸=0f(x)=(x32sinx)=32x31sinx+x32cosx2.x=0,f(0)=x0limx0f(x)f(0)=x0limxx32sinx=x0limx32=0f(x)={323x 1sinx+x32cosx,x̸=00,x=0[](u,v)=uv+uvx32

导数计算与应用

导数计算

基本求导公式表

( x k ) ′ = k x k − 1 ( ln ⁡ x ) ′ = 1 x ( ln ⁡ ∣ x ∣ ) ′ = 1 x ( e x ) ′ = e x ( a x ) ′ = a x ln ⁡ a , a &gt; 0 且 ̸ = 1 ( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = sec ⁡ 2 x = 1 cos ⁡ 2 x ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x ⋅ tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x ⋅ cot ⁡ x ( ln ⁡ ∣ cos ⁡ x ∣ ) ′ = − tan ⁡ x ( ln ⁡ ∣ sin ⁡ x ∣ ) ′ = cot ⁡ x ( ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ ) ′ = sec ⁡ x ( ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ ) ′ = csc ⁡ x ( arctan ⁡ x ) ′ = 1 1 + x 2 ( a r c cot ⁡ x ) ′ = − 1 1 + x 2 ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( ln ⁡ ( x + x 2 + a 2 ) ) ′ = 1 x 2 + a 2 常 见 a = 1 ( ln ⁡ ( x − x 2 − a 2 ) ) ′ = 1 x 2 − a 2 , x &gt; a \begin{aligned} &amp;(x^k)&#x27;=kx^{k-1}\qquad (\ln x)&#x27;=\frac1x\qquad(\ln\mid x\mid)&#x27;=\frac1x\\ &amp;(e^x)&#x27;=e^x\qquad (a^x)&#x27;=a^x\ln a,a&gt;0且\not=1\\ &amp;(\sin x)&#x27;=\cos x\qquad(\cos x)&#x27;=-\sin x\qquad(\tan x)&#x27;=\sec^2x=\frac1{\cos^2x}\\ &amp;(\cot x)&#x27;=-\csc^2x\qquad(\sec x)&#x27;=\sec x\cdot \tan x\qquad(\csc x)&#x27;=-\csc x\cdot \cot x\\ &amp;(\ln\mid\cos x\mid)&#x27;=-\tan x\qquad(\ln\mid\sin x\mid)&#x27;=\cot x\\ &amp;(\ln\mid\sec x+\tan x\mid)&#x27;=\sec x\qquad(\ln\mid\csc x-\cot x\mid)&#x27;=\csc x\\ &amp;(\arctan x)&#x27;=\frac1{1+x^2}\qquad(arc\cot x)&#x27;=-\frac1{1+x^2}\\ &amp;(\arcsin x)&#x27;=\frac1{\sqrt{1-x^2}}\qquad(\arccos x)&#x27;=-\frac1{\sqrt{1-x^2}}\\ &amp;(\ln(x+\sqrt{x^2+a^2}))&#x27;=\frac1{\sqrt{x^2+a^2}}常见a=1\qquad(\ln(x-\sqrt{x^2-a^2}))&#x27;=\frac1{\sqrt{x^2-a^2}},x&gt;a\\ \end{aligned} (xk)=kxk1(lnx)=x1(lnx)=x1(ex)=ex(ax)=axlna,a>0̸=1(sinx)=cosx(cosx)=sinx(tanx)=sec2x=cos2x1(cotx)=csc2x(secx)=secxtanx(cscx)=cscxcotx(lncosx)=tanx(lnsinx)=cotx(lnsecx+tanx)=secx(lncscxcotx)=cscx(arctanx)=1+x21(arccotx)=1+x21(arcsinx)=1x2 1(arccosx)=1x2 1(ln(x+x2+a2 ))=x2+a2 1a=1(ln(xx2a2 ))=x2a2 1,x>a

复合、隐、参数、分段(含绝对值)、反函数等

  [ 例 1 ] 设 f ( x ) = x 3 + 2 x − 4 , g ( x ) = f [ f ( x ) ] , 则 g ′ ( 0 ) = ‾ 一 层 一 层 剥 开 她 的 心 g ′ ( x ) = f ′ [ f ( x ) ] f ′ ( x ) f ′ ( x ) = 3 x 2 + 2 , 则 f ′ ( 0 ) = 2 , f ′ ( − 4 ) = 50 g ′ ( 0 ) = f ′ [ f ( 0 ) ] f ′ ( 0 ) = f ′ ( − 4 ) f ′ ( 0 ) = 100 [ 例 2 ] 设 y = x 3 + 3 x + 1 , 则 d x d y ∣ y = 1 = ‾ d x d y ∣ y = 1 = 1 y x ′ ∣ x = 0 = 1 3 x 2 + 3 ∣ x = 0 = 1 3 [ 例 3 ] 已 知 可 微 函 数 y = y ( x ) , 由 方 程 y = − y e x + 2 e y sin ⁡ x − 7 x 所 确 定 , 求 y ′ ′ ( 0 ) y = − y e x + 2 e y sin ⁡ x − 7 x &ThickSpace; ⟹ &ThickSpace; y ′ = − y ′ e x − y e x + 2 e y sin ⁡ x ⋅ y ′ + 2 e y ⋅ cos ⁡ x − 7 &ThickSpace; ⟹ &ThickSpace; y ′ ′ = − y ′ ′ e x − y ′ e x − y ′ e x − y e x + 2 e y ⋅ ( y ′ ) 2 sin ⁡ x + 2 e y cos ⁡ x ⋅ y ′ + 2 e y sin ⁡ x ⋅ y ′ ′ + 2 e y ⋅ y ′ cos ⁡ x − 2 e y sin ⁡ x 由 x = 0 代 入 , 分 别 得 : { y = 0 y ′ = − 5 2 y ′ ′ = − 5 2 [ 例 4 ] 设 函 数 y = y ( x ) 由 参 数 方 程 { x = 1 + t 2 y = cos ⁡ t 所 确 定 求 ( 1 ) d y d x 和 d 2 y d x 2 ; ( 2 ) lim ⁡ x → 1 + d y d x 和 lim ⁡ x → 1 + d 2 y d x 2 ( 1 ) d y d x = y t ′ x t ′ = − sin ⁡ t 2 t d 2 y d x 2 = d ( d y d x ) d x = − 1 2 ( t cos ⁡ t − sin ⁡ t t 2 ) 2 t = − t cos ⁡ t − sin ⁡ t 4 t 3 ( 2 ) lim ⁡ x → 1 + − sin ⁡ t 2 t = lim ⁡ t → 0 − sin ⁡ t 2 t = − 1 2 lim ⁡ x → 1 + = lim ⁡ t → 0 sin ⁡ t − t cos ⁡ t 4 t 3 = lim ⁡ t → 0 cos ⁡ t − cos ⁡ t + t sin ⁡ t 12 t 2 = 1 12 [ 例 5 ] 设 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ , 求 f ′ ( x ) ( 1 ) 先 写 出 f ( x ) = { − x e x − 1 , x &lt; 0 x e x − 1 , 0 ≤ x &lt; 1 x e 1 − x , x ≥ 1 ( 2 ) f ′ ( 0 ) 不 ∃ , f ′ ( 1 ) 不 ∃ ( 分 段 点 用 定 义 求 , 之 前 求 过 ) ( 3 ) 非 分 段 点 用 公 式 求 f ′ ( x ) = { ( − 1 − x ) e x − 1 , x &lt; 0 ( 1 + x ) e x − 1 , 0 &lt; x &lt; 1 ( 1 − x ) e 1 − x , x &gt; 1 \begin{aligned} \ [例1]&amp;\color{maroon}设f(x)=x^3+2x-4,g(x)=f[f(x)],则g&#x27;(0)=\underline{\quad}\\ &amp;一层一层剥开她的心\\ &amp;g&#x27;(x)=f&#x27;[f(x)]f&#x27;(x)\\ &amp;f&#x27;(x)=3x^2+2,则f&#x27;(0)=2,f&#x27;(-4)=50\\ &amp;g&#x27;(0)=f&#x27;[f(0)]f&#x27;(0)=f&#x27;(-4)f&#x27;(0)=100\\ [例2]&amp;\color{maroon}设y=x^3+3x+1,则\frac{dx}{dy}|_{y=1}=\underline{\qquad}\\ &amp;\frac{dx}{dy}|_{y=1}=\frac1{y&#x27;_x}|_{x=0}=\frac1{3x^2+3}|_{x=0}=\frac13\\ [例3]&amp;\color{maroon}已知可微函数y=y(x),由方程y=-ye^x+2e^y\sin x-7x所确定,求y&#x27;&#x27;(0)\\ &amp;y=-ye^x+2e^y\sin x-7x\\ &amp;\implies y&#x27;=-y&#x27;e^x-ye^x+2e^y\sin x\cdot y&#x27;+2e^y\cdot \cos x-7\\ &amp;\implies y&#x27;&#x27;=-y&#x27;&#x27;e^x-y&#x27;e^x-y&#x27;e^x-ye^x+2e^y\cdot(y&#x27;)^2\sin x+\\ &amp;2e^y\cos x\cdot y&#x27;+2e^y\sin x\cdot y&#x27;&#x27;+2e^y\cdot y&#x27;\cos x-2e^y\sin x\\ &amp;由x=0代入,分别得:\begin{cases}y=0\\y&#x27;=-\frac52\\y&#x27;&#x27;=-\frac52\end{cases}\\ [例4]&amp;\color{maroon}设函数y=y(x)由参数方程\begin{cases}x=1+t^2\\y=\cos t\end{cases}所确定\\ &amp;\color{maroon}求(1)\frac{dy}{dx}和\frac{d^2y}{dx^2};\\ &amp;\color{maroon}(2)\lim_{x\to1^+}\frac{dy}{dx}和\lim_{x\to1^+}\frac{d^2y}{dx^2}\\ (1)&amp;\frac{dy}{dx}=\frac{y&#x27;_t}{x&#x27;_t}=\frac{-\sin t}{2t}\\ &amp;\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{-\frac12(\frac{t\cos t-\sin t}{t^2})}{2t}=-\frac{t\cos t-\sin t}{4t^3}\\ (2)&amp;\lim_{x\to1^+}\frac{-\sin t}{2t}=\lim_{t\to0}-\frac{\sin t}{2t}=-\frac12\\ &amp;\lim_{x\to1^+}=\lim_{t\to0}\frac{\sin t-t\cos t}{4t^3}=\lim_{t\to0}\frac{\cos t-\cos t+t\sin t}{12t^2}=\frac1{12}\\ [例5]&amp;\color{maroon}设f(x)=\mid x\mid e^{-\mid x-1\mid},求f&#x27;(x)\\ &amp;(1)先写出f(x)=\begin{cases}-xe^{x-1},x&lt;0\\xe^{x-1},0\leq x&lt;1\\xe^{1-x},x\geq1\end{cases}\\ &amp;(2)f&#x27;(0)不\exists,f&#x27;(1)不\exists(分段点用定义求,之前求过)\\ &amp;(3)非分段点用公式求f&#x27;(x)=\begin{cases}(-1-x)e^{x-1},x&lt;0\\(1+x)e^{x-1},0&lt; x&lt;1\\(1-x)e^{1-x},x&gt;1\end{cases}\\ \end{aligned}  [1][2][3][4](1)(2)[5]f(x)=x3+2x4,g(x)=f[f(x)],g(0)=g(x)=f[f(x)]f(x)f(x)=3x2+2,f(0)=2,f(4)=50g(0)=f[f(0)]f(0)=f(4)f(0)=100y=x3+3x+1,dydxy=1=dydxy=1=yx1x=0=3x2+31x=0=31y=y(x),y=yex+2eysinx7xy(0)y=yex+2eysinx7xy=yexyex+2eysinxy+2eycosx7y=yexyexyexyex+2ey(y)2sinx+2eycosxy+2eysinxy+2eyycosx2eysinxx=0y=0y=25y=25y=y(x){x=1+t2y=cost(1)dxdydx2d2y;(2)x1+limdxdyx1+limdx2d2ydxdy=xtyt=2tsintdx2d2y=dxd(dxdy)=2t21(t2tcostsint)=4t3tcostsintx1+lim2tsint=t0lim2tsint=21x1+lim=t0lim4t3sinttcost=t0lim12t2costcost+tsint=121f(x)=xex1,f(x)(1)f(x)=xex1,x<0xex1,0x<1xe1x,x1(2)f(0),f(1)()(3)f(x)=(1x)ex1,x<0(1+x)ex1,0<x<1(1x)e1x,x>1

  [ 例 6 ] 设 y = f ( x ) 与 x = g ( y ) 互 为 反 函 数 , y = f ( x ) 可 导 且 f ′ ( x ) ̸ = 0 , f ( 3 ) = 5 , h ( x ) = f [ 1 3 g 2 ( x 2 + 3 x + 1 ) ] , 求 h ′ ( 1 ) h ′ ( x ) = f ′ [ 1 3 g 2 ( x 2 + 3 x + 1 ) ] 1 3 2 g ( x 2 + 3 x + 1 ) ⋅ g ′ ( x 2 + 3 x + 1 ) ⋅ ( 2 x + 3 ) h ′ ( 1 ) = f ′ ( 1 3 g 2 ( 5 ) ) ⋅ 2 3 g ( 5 ) ⋅ g ′ ( 5 ) ⋅ 5 由 y = f ( x ) 与 x = g ( y ) 是 反 函 数 &ThickSpace; ⟹ &ThickSpace; d y d x = f ′ ( x ) , d x d y = g ′ ( y ) &ThickSpace; ⟹ &ThickSpace; { f ′ ( x ) g ′ ( y ) = 1 f ( 3 ) = 5 , 3 = g ( 5 ) f ( x ) = y , x = g ( y ) &ThickSpace; ⟹ &ThickSpace; h ′ ( 1 ) = f ′ ( 3 ) ⋅ 2 3 g ( 5 ) ⋅ g ′ ( 5 ) ⋅ 5 = 10 [ 例 7 ] x = f ( y ) 是 函 数 y = x + ln ⁡ x 的 反 函 数 , 求 d 2 f d y 2 x y ′ = 1 y x ′ , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 有 y x ′ = 1 + 1 x , y x ′ ′ = − 1 x 2 , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 = − − 1 / x 2 ( 1 + 1 x ) 3 = x ( 1 + x ) 3 \begin{aligned} \ [例6]&amp;\color{maroon}设y=f(x)与x=g(y)互为反函数,y=f(x)可导且f&#x27;(x)\not=0,f(3)=5,h(x)=f[\frac13g^2(x^2+3x+1)],\\ &amp;\color{maroon}求h&#x27;(1)\\ &amp;h&#x27;(x)=f&#x27;[\frac13g^2(x^2+3x+1)]\frac132g(x^2+3x+1)\cdot g&#x27;(x^2+3x+1)\cdot(2x+3)\\ &amp;h&#x27;(1)=f&#x27;(\frac13g^2(5))\cdot\frac23g(5)\cdot g&#x27;(5)\cdot5\\ &amp;由y=f(x)与x=g(y)是反函数\implies\frac{dy}{dx}=f&#x27;(x),\frac{dx}{dy}=g&#x27;(y)\\ &amp;\implies\begin{cases}f&#x27;(x)g&#x27;(y)=1\\f(3)=5,3=g(5)\\f(x)=y,x=g(y)\end{cases}\implies h&#x27;(1)=f&#x27;(3)\cdot\frac23g(5)\cdot g&#x27;(5)\cdot5=10\\ [例7]&amp;\color{maroon}x=f(y)是函数y=x+\ln x的反函数,求\frac{d^2f}{dy^2}\\ &amp;x&#x27;_y=\frac1y&#x27;_x,x&#x27;&#x27;_y=-\frac{y&#x27;&#x27;_x}{(y&#x27;_x)^3}\\ &amp;有y&#x27;_x=1+\frac1x,y&#x27;&#x27;_x=-\frac1{x^2},x&#x27;&#x27;_y=-\frac{y&#x27;&#x27;_x}{(y&#x27;_x)^3}=-\frac{-1/x^2}{(1+\frac1x)^3}=\frac{x}{(1+x)^3}\\ \end{aligned}  [6][7]y=f(x)x=g(y)y=f(x)f(x)̸=0,f(3)=5,h(x)=f[31g2(x2+3x+1)],h(1)h(x)=f[31g2(x2+3x+1)]312g(x2+3x+1)g(x2+3x+1)(2x+3)h(1)=f(31g2(5))32g(5)g(5)5y=f(x)x=g(y)dxdy=f(x),dydx=g(y)f(x)g(y)=1f(3)=5,3=g(5)f(x)=y,x=g(y)h(1)=f(3)32g(5)g(5)5=10x=f(y)y=x+lnxdy2d2fxy=y1x,xy=(yx)3yxyx=1+x1,yx=x21,xy=(yx)3yx=(1+x1)31/x2=(1+x)3x

多项乘除开方乘方

  [ 例 1 ] 设 y = [ ( 1 + x ) ( 3 + x ) 9 ] 1 2 ⋅ ( 2 + x ) 4 , 求 y ′ ( 0 ) 取 对 数 , 再 求 导 ln ⁡ y = 1 2 ln ⁡ ( 1 + x ) + 9 2 ln ⁡ ( 3 + x ) + 4 ln ⁡ ( 2 + x ) &ThickSpace; ⟹ &ThickSpace; 1 y ⋅ y ′ = 1 2 ⋅ 1 1 + x + 9 2 ⋅ 1 3 + x + 4 ⋅ 1 2 + x &ThickSpace; ⟹ &ThickSpace; y ′ ( 0 ) = ( 1 2 + 9 6 + 2 ) ⋅ 3 9 2 ⋅ 2 4 = 2 6 ⋅ 3 9 2 [ 例 2 ] 设 f ( x ) = ( 1 + x ) x e x − 1 + arcsin ⁡ 1 − x 1 + x 2 , 求 f ′ ( 1 ) 令 y 1 = ( 1 + x ) x e x − 1 &ThickSpace; ⟹ &ThickSpace; ln ⁡ y 1 = 1 2 ( ln ⁡ ( 1 + x ) + 1 2 ln ⁡ x − ( x − 1 ) ) &ThickSpace; ⟹ &ThickSpace; 1 y 1 ⋅ y 1 ′ ′ = 1 2 ( 1 1 + x + 1 2 x − 1 ) &ThickSpace; ⟹ &ThickSpace; y 1 ′ ( 1 ) 代 入 → 0 令 y 2 = arcsin ⁡ 1 − x 1 + x 2 &ThickSpace; ⟹ &ThickSpace; y 2 ′ ( 1 ) = lim ⁡ x → 1 y 2 ( x ) − y 2 ( 1 ) x − 1 = lim ⁡ x → 1 arcsin ⁡ 1 − x 1 + x 2 − 0 x − 1 = lim ⁡ x → 1 1 − x 1 + x 2 x − 1 = − 2 2 故 f ′ ( 1 ) = − 2 2 \begin{aligned} \ [例1]&amp;\color{maroon}设y=[(1+x)(3+x)^9]^{\frac12}\cdot(2+x)^4,求y&#x27;(0)\\ &amp;取对数,再求导\\ &amp;\ln y=\frac12\ln(1+x)+\frac92\ln(3+x)+4\ln(2+x)\\ &amp;\implies\frac1y\cdot y&#x27;=\frac12\cdot\frac1{1+x}+\frac92\cdot\frac1{3+x}+4\cdot\frac1{2+x}\\ &amp;\implies y&#x27;(0)=(\frac12+\frac96+2)\cdot3^{\frac92}\cdot2^4=2^6\cdot3^{\frac92}\\ [例2]&amp;\color{maroon}设f(x)=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}+\arcsin\frac{1-x}{\sqrt{1+x^2}},求f&#x27;(1)\\ &amp;令y_1=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}\implies\ln{y_1}=\frac12(\ln(1+x)+\frac12\ln x-(x-1))\\ &amp;\implies\frac1{y_1}\cdot y_1&#x27;&#x27;=\frac12(\frac1{1+x}+\frac1{2x}-1)\\ &amp;\implies y&#x27;_1(1)\underrightarrow{代入}0\\ &amp;令y_2=\arcsin\frac{1-x}{\sqrt{1+x^2}}\implies y_2&#x27;(1)=\lim_{x\to1}\frac{y_2(x)-y_2(1)}{x-1}\\ &amp;=\lim_{x\to1}\frac{\arcsin\frac{1-x}{\sqrt{1+x^2}}-0}{x-1}=\lim_{x\to1}\frac{\frac{1-x}{\sqrt{1+x^2}}}{x-1}=-\frac{\sqrt2}{2}\\ &amp;故f&#x27;(1)=-\frac{\sqrt2}2 \end{aligned}  [1][2]y=[(1+x)(3+x)9]21(2+x)4,y(0)lny=21ln(1+x)+29ln(3+x)+4ln(2+x)y1y=211+x1+293+x1+42+x1y(0)=(21+69+2)32924=26329f(x)=ex1(1+x)x +arcsin1+x2 1x,f(1)y1=ex1(1+x)x lny1=21(ln(1+x)+21lnx(x1))y11y1=21(1+x1+2x11)y1(1) 0y2=arcsin1+x2 1xy2(1)=x1limx1y2(x)y2(1)=x1limx1arcsin1+x2 1x0=x1limx11+x2 1x=22 f(1)=22

高阶导数

归纳法

莱布尼茨公式法

展开

  [ 例 1 ] 求 下 列 导 数 ( 1 ) y = ln ⁡ ( 1 + x ) , 求 y ( n ) ( 2 ) y = e x cos ⁡ x , 求 y ( 4 ) ( 3 ) 设 f ( x ) = ( x 2 − 3 x + 2 ) n cos ⁡ π x 2 16 , 则 f ( n ) ( 2 ) = ‾ ( 4 ) 设 f ( x ) = x 1 − 2 x 4 , 则 f ( 101 ) ( 0 ) = ‾ ( 1 ) ( 1 x ) ′ = ( x − 1 ) − 1 = ( − 1 ) x − 2 , ( 1 x ) ′ ′ = ( − 1 ) ( − 2 ) x − 3 , ( 1 x ) n = ( − 1 ) n ! x − ( n + 1 ) ( ln ⁡ x ) ′ = 1 x , ( ln ⁡ x ) n = ( 1 x ) n − 1 = ( − 1 ) n − 1 ( n − 1 ) ! ( ln ⁡ ( 1 + x ) ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) − n [ 注 ] 同 理 , ( e x ) ( n ) = e x , ( a x ) ( n ) = a x ( ln ⁡ a ) n ( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n ⋅ π 2 ) , ( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n ⋅ π 2 ) ( 2 ) ( u ⋅ v ) n = ∑ k = 0 n C n k u ( k ) v ( n − k ) = C n 0 u v ( n ) + C n 1 u ′ v ( n − 1 ) + ⋯ + C n n u ( n ) v ( 0 ) cos ⁡ x ( e x ) 4 + 4 ( − sin ⁡ x ) ( e x ) ′ ′ ′ + 6 ( − cos ⁡ x ) ( e x ) ′ ′ + 4 sin ⁡ x ( e x ) ′ + cos ⁡ x ⋅ e x ( 3 ) ( x − 2 ) 3 → 3 ( x − 2 ) 2 → 6 ( x − 2 ) → 6 → 3 ! ( x − x 0 ) n 求 n 阶 导 数 得 到 n ! 故 f ( x ) = ( x − 2 ) n ( x − 1 ) n ⋅ cos ⁡ π x 2 16 f ( n ) ( 2 ) = ( x − 2 ) n ∣ x = 2 + ( x − 2 ) n − 1 ∣ x = 2 + ⋯ + ( x − 2 ) ∣ x = 2 + 1 ⋅ n ! ⋅ 2 2 ( 4 ) { 1. 抽 象 展 开 f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n 2. 具 体 展 开 式 f ( x ) = 3. 展 开 式 唯 一 &ThickSpace; ⟹ &ThickSpace; 1 = 2 &ThickSpace; ⟹ &ThickSpace; f ( n ) ( 0 ) 1. f ( x ) = ∑ m = 0 ∞ f ( m ) ( 0 ) m ! x m 2. f ( x ) = x ⋅ ∑ n = 0 ∞ 2 n ⋅ x 4 n = ∑ n = 0 ∞ 2 n ⋅ x 4 n + 1 3. m = 101 &ThickSpace; ⟹ &ThickSpace; f ( 101 ) ( 0 ) ( 101 ) ! x 101 &ThickSpace; ⟹ &ThickSpace; 4 n + 1 = 101 &ThickSpace; ⟹ &ThickSpace; n = 25 &ThickSpace; ⟹ &ThickSpace; 2 25 x 101 即 f ( 101 ) ( 0 ) = 2 25 ( 101 ) ! [ 注 ] 1 1 − x = 1 + x + x 2 + c d o t s + x n + ⋯ = ∑ n = 0 ∞ x n , ∣ x ∣ &lt; 1 1 1 − 狗 = ∑ n = 0 ∞ 狗 n , ∣ 狗 ∣ &lt; 1 1 1 − 2 x 4 = ∑ n = 0 ∞ ( 2 x 4 ) n , ∣ 2 x 4 ∣ &lt; 1 \begin{aligned} \ [例1]&amp;\color{maroon}求下列导数\\ (1)&amp;\color{maroon}y=\ln(1+x),求y^{(n)}\\ (2)&amp;\color{maroon}y=e^x\cos x,求y^{(4)}\\ (3)&amp;\color{maroon}设f(x)=(x^2-3x+2)^n\cos\frac{\pi x^2}{16},则f^{(n)}(2)=\underline{\quad}\\ (4)&amp;\color{maroon}设f(x)=\frac{x}{1-2x^4},则f^{(101)}(0)=\underline{\quad}\\ (1)&amp;(\frac1x)&#x27;=(x^{-1})^{-1}=(-1)x^{-2},(\frac1x)&#x27;&#x27;=(-1)(-2)x^{-3},(\frac1x)^n=(-1)n!x^{-(n+1)}\\ &amp;(\ln x)&#x27;=\frac1x,(\ln x)^n=(\frac1x)^{n-1}=(-1)^{n-1}(n-1)!\\ &amp;(\ln(1+x))^{(n)}=(-1)^{n-1}(n-1)!(1+x)^{-n}\\ [注]&amp;同理,(e^x)^{(n)}=e^x,(a^x)^{(n)}=a^x(\ln a)^n\\ &amp;(\sin kx)^{(n)}=k^n\sin(kx+n\cdot\frac{\pi}2),(\cos kx)^{(n)}=k^n\cos(kx+n\cdot\frac{\pi}2)\\ (2)&amp;(u\cdot v)^n=\sum_{k=0}^nC_n^ku^{(k)}v^{(n-k)}=C_n^0uv^{(n)}+C_n^1u&#x27;v^{(n-1)}+\cdots+C_n^nu^{(n)}v^{(0)}\\ &amp;\cos x(e^x)^4+4(-\sin x)(e^x)&#x27;&#x27;&#x27;+6(-\cos x)(e^x)&#x27;&#x27;+4\sin x(e^x)&#x27;+\cos x\cdot e^x\\ (3)&amp;(x-2)^3\to3(x-2)^2\to6(x-2)\to6\to3!\\ &amp;(x-x_0)^n求n阶导数得到n!\\ &amp;故f(x)=(x-2)^n(x-1)^n\cdot\cos\frac{\pi x^2}{16}\\ &amp;f^{(n)}(2)=(x-2)^n|_{x=2}+(x-2)^{n-1}|_{x=2}+\cdots+(x-2)|_{x=2}+1\cdot n!\cdot\frac{\sqrt2}2\\ (4)&amp;\begin{cases}1.抽象展开f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n\\2.具体展开式f(x)=\\3.展开式唯一\implies1=2\implies f^{(n)}(0)\end{cases}\\ &amp;1.f(x)=\sum_{m=0}^{\infty}\frac{f^{(m)}(0)}{m!}x^m\\ &amp;2.f(x)=x\cdot\sum_{n=0}^{\infty}2^n\cdot x^{4n}=\sum_{n=0}^{\infty}2^n\cdot x^{4n+1}\\ &amp;3.m=101\implies \frac{f^{(101)}(0)}{(101)!}x^{101}\implies 4n+1=101\implies n=25\\ &amp;\implies 2^{25}x^{101}即f^{(101)}(0)=2^{25}(101)!\\ [注]&amp;\frac1{1-x}=1+x+x^2+cdots+x^n+\cdots=\sum_{n=0}^{\infty}x^n,\mid x\mid&lt;1\\ &amp;\frac1{1-狗}=\sum_{n=0}^{\infty}狗^n,\mid 狗\mid&lt;1\\ &amp;\frac1{1-2x^4}=\sum_{n=0}^{\infty}(2x^4)^n,\mid 2x^4\mid&lt;1\\ \end{aligned}  [1](1)(2)(3)(4)(1)[](2)(3)(4)[]y=ln(1+x),y(n)y=excosx,y(4)f(x)=(x23x+2)ncos16πx2,f(n)(2)=f(x)=12x4x,f(101)(0)=(x1)=(x1)1=(1)x2,(x1)=(1)(2)x3,(x1)n=(1)n!x(n+1)(lnx)=x1,(lnx)n=(x1)n1=(1)n1(n1)!(ln(1+x))(n)=(1)n1(n1)!(1+x)n(ex)(n)=ex,(ax)(n)=ax(lna)n(sinkx)(n)=knsin(kx+n2π),(coskx)(n)=kncos(kx+n2π)(uv)n=k=0nCnku(k)v(nk)=Cn0uv(n)+Cn1uv(n1)++Cnnu(n)v(0)cosx(ex)4+4(sinx)(ex)+6(cosx)(ex)+4sinx(ex)+cosxex(x2)33(x2)26(x2)63!(xx0)nnn!f(x)=(x2)n(x1)ncos16πx2f(n)(2)=(x2)nx=2+(x2)n1x=2++(x2)x=2+1n!22 1.f(x)=n=0n!f(n)(0)xn2.f(x)=3.1=2f(n)(0)1.f(x)=m=0m!f(m)(0)xm2.f(x)=xn=02nx4n=n=02nx4n+13.m=101(101)!f(101)(0)x1014n+1=101n=25225x101f(101)(0)=225(101)!1x1=1+x+x2+cdots+xn+=n=0xn,x<111=n=0n,<112x41=n=0(2x4)n,2x4<1

导数的几何应用

研究对象

1. 祖 孙 三 代 { f ( x ) , f n ( x ) , f 1 f 2 … f n f ′ ( x ) , d f ( x ) d x 2 = 1 2 x f ′ ( x ) ∫ a x f ( t ) d t ∑ a n x n 2. 分 段 函 数 ( 含 绝 对 值 函 数 ) 3. 用 参 数 表 示 函 数 { x = x ( t ) y = y ( t ) 4. 隐 函 数 F ( x , y ) = 0 \begin{aligned} &amp;1.祖孙三代\begin{cases}f(x),f_n(x),f_1f_2\ldots f_n\\f&#x27;(x),\frac{df(x)}{dx^2}=\frac1{2x}f&#x27;(x)\\\int_a^xf(t)dt\\\sum a_nx^n\end{cases}\\ &amp;2.分段函数(含绝对值函数)\\ &amp;3.用参数表示函数\begin{cases}x=x(t)\\y=y(t)\end{cases}\\ &amp;4.隐函数F(x,y)=0 \end{aligned} 1.f(x),fn(x),f1f2fnf(x),dx2df(x)=2x1f(x)axf(t)dtanxn2.3.{x=x(t)y=y(t)4.F(x,y)=0

研究内容
斜率、切线、法线、截距

y = y ( x ) &ThickSpace; ⟹ &ThickSpace; y ′ ( x ) &ThickSpace; ⟹ &ThickSpace; k &ThickSpace; ⟺ &ThickSpace; 切 线 k , 法 线 − 1 k [ 例 1 ] 曲 线 ( 2 − x n 2 ) y = 1 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 … , 则 lim ⁡ n → ∞ x n n 2 2 = ? ( f n ( x ) → k ) y = 1 2 − x n 2 , y ′ = − − n 2 x n 2 − 1 ( 2 − x n 2 ) 2 , y ′ ( 1 ) = n 2 = k n 切 线 y − 1 = n 2 ( x − 1 ) , 令 y = 0 , x n = 1 − 1 n 2 故 lim ⁡ n → ∞ x n n 2 2 = lim ⁡ n → ∞ ( 1 − 1 n 2 ) n 2 2 = e lim ⁡ n → ∞ n 2 / 2 ⋅ ( − 1 / n 2 ) = e − 1 2 [ 例 2 ] 使 曲 线 f ( x ) = x n 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 , ⋯ &ThinSpace; , 求 lim ⁡ n → ∞ f ( x n ) f ′ ( x ) = n x n − 1 &ThickSpace; ⟹ &ThickSpace; k = n , 故 y − 1 = n ( x − 1 ) &ThickSpace; ⟹ &ThickSpace; x n = 1 − 1 n 故 I = lim ⁡ n → ∞ f ( x n ) = lim ⁡ n → ∞ ( 1 − 1 n ) n = e A = e − 1 其 中 A = lim ⁡ n → ∞ n ( 1 − 1 n − 1 ) = − 1 [ 例 3 ] 若 曲 线 C : f ( x ) 由 方 程 2 x − y = 2 arctan ⁡ ( y − x ) 确 定 , 则 曲 线 在 点 ( 1 + π 2 , 2 + π 2 ) 的 切 线 方 程 是 ‾ 2 − y ′ = 2 1 + ( y − x ) 2 ( y ′ − 1 ) &ThickSpace; ⟹ &ThickSpace; k = y ′ ∣ p = 3 2 &ThickSpace; ⟹ &ThickSpace; y − ( 2 + π 2 ) = 3 2 ( x − ( 1 + π 2 ) ) [ 例 4 ] 已 知 两 条 曲 线 由 y = f ( x ) 与 x y + e x + y = 1 所 确 定 , 且 在 点 ( 0 , 0 ) 处 的 切 线 相 同 , 写 出 此 切 线 方 程 , 求 极 限 lim ⁡ n → 0 n f ( 2 n ) 由 x y + e x + y = 1 , 知 y + x y ′ + e x + y ( 1 + y ′ ) = 0 &ThickSpace; ⟹ &ThickSpace; y ′ ( 0 ) = − 1 = k , ∴ y − 0 = − x &ThickSpace; ⟹ &ThickSpace; I = lim ⁡ n → ∞ f ( 2 n ) 1 n = lim ⁡ n → ∞ f ( 0 + 2 n ) − f ( 0 ) 2 n ⋅ 2 = 2 f ′ ( 0 ) = − 2 \begin{aligned} &amp;\color{blue}{y=y(x)\implies y&#x27;(x)\implies k\iff切线k,法线-\frac1k}\\ [例1]&amp;\color{maroon}{曲线(2-x^{n^2})y=1在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2\ldots,则\lim_{n\to\infty}x_n^{\frac{n^2}2}=?}\color{green}{(f_n(x)\to k)}\\ &amp;y=\frac1{2-x^{n^2}},y&#x27;=-\frac{-n^2x^{n^2-1}}{(2-x^{n^2})^2},y&#x27;(1)=n^2=k_n\\ &amp;切线y-1=n^2(x-1),令y=0,x_n=1-\frac1{n^2}\\ &amp;故\lim_{n\to\infty}x_n^{\frac{n^2}2}=\lim_{n\to\infty}(1-\frac1{n^2})^{\frac{n^2}2}=e^{\lim_n\to\infty n^2/2\cdot(-1/n^2)}=e^{-\frac12}\\ [例2]&amp;\color{maroon}使曲线f(x)=x^n在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2,\cdots,求\lim_{n\to\infty}f(x_n)\\ &amp;f&#x27;(x)=nx^{n-1}\implies k=n,故y-1=n(x-1)\implies x_n=1-\frac1n\\ &amp;故I=\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}(1-\frac1n)^n=e^A=e^{-1}\\ &amp;其中A=\lim_{n\to\infty}n(1-\frac1n-1)=-1\\ [例3]&amp;\color{maroon}若曲线C:f(x)由方程2x-y=2\arctan(y-x)确定,则曲线在点(1+\frac\pi2,2+\frac\pi2)的切线方程是\underline{\qquad}\\ &amp;2-y&#x27;=\frac2{1+(y-x)^2}(y&#x27;-1)\implies k=y&#x27;|_p=\frac32\\ &amp;\implies y-(2+\frac{\pi}2)=\frac32(x-(1+\frac\pi2))\\ [例4]&amp;\color{maroon}已知两条曲线由y=f(x)与xy+e^{x+y}=1所确定,且在点(0,0)处的切线相同,\\ &amp;\color{maroon}写出此切线方程,求极限\lim_{n\to0}nf(\frac2n)\\ &amp;由xy+e^{x+y}=1,知y+xy&#x27;+e^{x+y}(1+y&#x27;)=0\\ &amp;\implies y&#x27;(0)=-1=k,\therefore y-0=-x\\ &amp;\implies I=\lim_{n\to\infty}\frac{f(\frac2n)}{\frac1n}=\lim_{n\to\infty}\frac{f(0+\frac2n)-f(0)}{\frac2n}\cdot2=2f&#x27;(0)=-2\\ \end{aligned} [1][2][3][4]y=y(x)y(x)k线k,线k1线(2xn2)y=1(1,1)线x(xn,0),n=1,2,nlimxn2n2=?(fn(x)k)y=2xn21,y=(2xn2)2n2xn21,y(1)=n2=kn线y1=n2(x1),y=0,xn=1n21nlimxn2n2=nlim(1n21)2n2=elimnn2/2(1/n2)=e21使线f(x)=xn(1,1)线x(xn,0),n=1,2,,nlimf(xn)f(x)=nxn1k=n,y1=n(x1)xn=1n1I=nlimf(xn)=nlim(1n1)n=eA=e1A=nlimn(1n11)=1线C:f(x)2xy=2arctan(yx)线(1+2π,2+2π)线2y=1+(yx)22(y1)k=yp=23y(2+2π)=23(x(1+2π))线y=f(x)xy+ex+y=1(0,0)线线n0limnf(n2xy+ex+y=1,y+xy+ex+y(1+y)=0y(0)=1=k,y0=xI=nlimn1f(n2)=nlimn2f(0+n2)f(0)2=2f(0)=2

极值、单调性

极 值 点 : 若 存 在 x 0 的 某 个 邻 域 , 使 得 在 该 邻 域 内 任 意 一 点 x , 则 { f ( x ) ≤ f ( x 0 ) → 极 大 值 f ( x ) ≥ f ( x 0 ) → 极 小 值 单 调 性 : 若 y = f ( x ) 在 区 间 I 上 有 f ′ ( x ) &gt; 0 , 则 y = f ( x ) 在 I 上 单 调 增 加 , 若 f ′ ( x ) &lt; 0 , 则 单 调 减 少 判 别 : { 1. 令 f ′ ( x ) = 0 &ThickSpace; ⟹ &ThickSpace; x 0 驻 点 ( 不 ∃ &ThickSpace; ⟹ &ThickSpace; 不 可 导 点 ) 2. 判 别 ( x 0 − δ , x 0 ) 时 , f ′ ( x ) ? 0 , ( x 0 , x 0 + δ ) 时 , f ′ ( x ) ? 0 , → x 0 是 否 为 极 值 点 [ 例 1 ] 求 y = ∑ k = 0 n x k k ! ⋅ e − x 的 极 值 ( ∑ a n x n → 极 值 / 单 调 性 ) y = ∑ k = 0 n x k k ! ⋅ e − x = ( 1 + x + x 2 2 ! + ⋯ + x n n ! ) ⋅ e − x 1. y ′ = ( 1 + x + x 2 2 ! + ⋯ + x n − 1 n − 1 ) ⋅ e − x + ( 1 + x + x 2 2 ! + ⋯ + x n n ! ) ⋅ e − x ⋅ ( − 1 ) = − x n n ! ⋅ e − x 令 y ′ = 0 &ThickSpace; ⟹ &ThickSpace; x = 0 ( 驻 点 ) 2. { n 为 偶 数 { x &lt; 0 x &gt; 0 → y ′ ( x ) &lt; 0 → x = 0 不 是 极 值 点 n 为 奇 数 { x &lt; 0 → y ′ ( x ) &gt; 0 x &gt; 0 → y ′ ( x ) &lt; 0 → x = 0 是 极 大 值 点 [ 例 2 ] { x 2 x , x &gt; 0 x e x + 1 , x ≤ 0 求 f ′ ( x ) 并 求 f ( x ) 的 极 值 1. x &gt; 0 , f ′ ( x ) = ( x 2 x ) ′ = ( e 2 x ln ⁡ x ) ′ = e 2 x ln ⁡ x ⋅ ( 2 ln ⁡ x + x ) = 2 x 2 x ⋅ ( ln ⁡ x + 1 ) x &lt; 0 , f ′ ( x ) = e x + x ⋅ e x = ( 1 + x ) e x x = 0 , f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + e 2 x ln ⁡ x − 1 x = − ∞ , 不 存 在 则 f ′ ( x ) = { 2 x 2 x ⋅ ( ln ⁡ x + 1 ) , x &gt; 0 ( 1 + x ) e x , x &lt; 0 2. 令 2 x 2 x ⋅ ( ln ⁡ x + 1 ) = 0 &ThickSpace; ⟹ &ThickSpace; x = 1 e &ThickSpace; ⟺ &ThickSpace; 0 &lt; x &lt; 1 e → f ′ ( x ) &lt; 0 x &gt; 1 e → f ′ ( x ) &gt; 0 lim ⁡ x → 0 + x 2 x = e 0 = 1 = f ( 0 ) , ∴ 极 小 值 f ( 1 e ) = e − 2 e 令 ( 1 + x ) e x = 0 &ThickSpace; ⟹ &ThickSpace; x = − 1 &ThickSpace; ⟺ &ThickSpace; x &lt; − 1 → f ′ ( x ) &lt; 0 x &gt; − 1 &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) &gt; 0 ∴ 极 小 值 f ( − 1 ) = 1 − 1 e 且 极 大 值 f ( 0 ) = 1 [ 例 3 ] 求 双 曲 线 y 1 = 1 x 与 抛 物 线 y 2 = x 的 交 角 交 点 ( 1 , 1 ) , y 1 ′ ( 1 ) = ( − 1 x 2 ) ∣ x = 1 = − 1 = tan ⁡ α y 2 ′ ( 1 ) = ( 1 2 x ) ∣ x = 1 = 1 2 = tan ⁡ β &ThickSpace; ⟹ &ThickSpace; r = α − β = 3 4 π − arctan ⁡ 1 2 [ 例 4 ] 求 函 数 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ 的 极 值 f ( x ) = { − x e x − 1 , x &lt; 0 0 , x = 0 x e x − 1 , 0 &lt; x &lt; 1 1 , x = 1 x e 1 − x , x &gt; 1 f ′ ( x ) = { − e x − 1 − x e x − 1 , x &lt; 0 e x − 1 + x e x − 1 , 0 &lt; x &lt; 1 e 1 − x − x e 1 x , x &gt; 1 f ( ′ 0 ) = − e − 1 , f + ′ ( 0 ) = e − 1 , ∴ f ′ ( 0 ) 不 存 在 f ( ′ 1 ) = 2 , f + ′ ( 1 ) = 0 , ∴ f ′ ( 1 ) 不 存 在 知 x 1 = − 1 , x 2 = 0 , x 3 = 1 , 则 x 1 = − 1 为 极 大 点 , x 2 = 0 为 极 小 点 , x 3 = 1 为 极 大 点 [ 例 5 ] 设 正 值 函 数 f ( x ) 在 ( 1 , + ∞ ) 内 连 续 , 求 函 数 F ( x ) = ∫ 1 x [ ( 2 x + ln ⁡ x ) − ( 2 t + ln ⁡ t ) ] f ( t ) d t 的 最 小 值 点 F ( x ) = ∫ 1 x ( 2 x + ln ⁡ x ) f ( t ) d t − ∫ 1 x ( 2 t + ln ⁡ t ) f ( t ) d t = ( 2 x + ln ⁡ x ) ∫ 1 x f ( t ) d t − ∫ 1 x ( 2 t + ln ⁡ t ) f ( t ) d t &ThickSpace; ⟹ &ThickSpace; F ′ ( x ) = ( − 2 x 2 + 1 x ) ∫ 1 x f ( t ) d t + ( 2 x + ln ⁡ x ) F ( x ) − ( 2 x + ln ⁡ x ) f ( x ) 由 F ′ ( x ) = 0 知 x = 2 是 唯 一 极 小 值 点 , ∴ x = 2 是 最 小 值 点 [ 例 6 ] 设 f ( x ) = { lim ⁡ n → ∞ 1 n ( 1 + cos ⁡ x n + cos ⁡ 2 x n + ⋯ + cos ⁡ n − 1 n x ) , x &gt; 0 1 , x = 0 f ( − x ) , x &lt; 0 ( 1 ) 求 f ′ ( 0 ) ( 2 ) 求 f ( x ) 在 [ − π , π ] 上 的 最 大 值 ( 1 ) x &gt; 0 时 , f ( x ) = lim ⁡ n → ∞ ∑ i = 0 n − 1 cos ⁡ i n x ⋅ 1 n = lim ⁡ n → ∞ ∑ i = 0 n − 1 cos ⁡ x n i ⋅ x n ⋅ 1 x = 1 x ∫ 0 x cos ⁡ t d t = sin ⁡ x x &ThickSpace; ⟹ &ThickSpace; f ( x ) = { sin ⁡ x x , x &gt; 0 1 , x = 0 sin ⁡ x x , x &lt; 0 为 偶 函 数 f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 sin ⁡ x x − 1 x = lim ⁡ x → 0 sin ⁡ x − x x 2 = 0 ( 2 ) 只 研 究 [ 0 , π ] , f ′ ( x ) = ( sin ⁡ x x ) ′ = x cos ⁡ x − sin ⁡ x x 2 令 g ( x ) = x cos ⁡ x − sin ⁡ x 则 g ′ ( x ) = cos ⁡ x + x ( − sin ⁡ x ) − cos ⁡ x = − x sin ⁡ x ≤ 0 &ThickSpace; ⟹ &ThickSpace; g ( x ) 单 调 递 减 , g ( 0 ) = 0 &ThickSpace; ⟹ &ThickSpace; g ( x ) &lt; 0 &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) &lt; 0 &ThickSpace; ⟹ &ThickSpace; f ( x ) 单 调 递 减 , f ( 0 ) = 1 , f ( π ) = 0 &ThickSpace; ⟹ &ThickSpace; [ 0 , 1 ] [ 例 7 ] 已 知 f ′ ( − x ) = x [ f ′ ( x ) + 1 ] , 求 f ( x ) 的 极 值 点 , 并 说 明 是 极 大 值 点 还 是 极 小 值 点 f ′ ( − 1 x ) = x [ f ′ ( x ) + 1 ] &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) = − x [ f ′ ( x ) + 1 ] 代 入 , 得 f ′ ( x ) = − x [ x [ f ′ ( x ) + 1 ] + 1 ] &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) = − x 2 − x 1 + x 2 由 f ′ ( x ) = 0 , 知 x 1 = 0 , x 2 = − 1 ∴ x 1 = 0 是 极 大 值 点 , x 2 = − 1 是 极 小 值 点 \begin{aligned} &amp;\color{blue}极值点:若存在x_0的某个邻域,使得在该邻域内任意一点x,则\begin{cases}f(x)\leq f(x_0)\to极大值\\f(x)\geq f(x_0)\to极小值\end{cases}\\ &amp;\color{blue}单调性:若y=f(x)在区间I上有f&#x27;(x)&gt;0,则y=f(x)在I上单调增加,若f&#x27;(x)&lt;0,则单调减少\\ &amp;\color{blue}判别: \begin{cases}1.令f&#x27;(x)=0\implies x_0驻点(不\exists\implies不可导点)\\2.判别(x_0-\delta,x_0)时,f&#x27;(x)?0,(x_0,x_0+\delta)时,f&#x27;(x)?0,\to x_0是否为极值点\end{cases}\\ [例1]&amp;\color{maroon}{求y=\sum_{k=0}^n\frac{x^k}{k!}\cdot e^{-x}的极值}\color{green}{(\sum a_nx^n\to极值/单调性)}\\ &amp;y=\sum_{k=0}^n\frac{x^k}{k!}\cdot e^{-x}=(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!})\cdot e^{-x}\\ &amp;1.y&#x27;=(1+x+\frac{x^2}{2!}+\cdots+\frac{x^{n-1}}{n-1})\cdot e^{-x}+(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!})\cdot e^{-x}\cdot(-1)=-\frac{x^n}{n!}\cdot e^{-x}\\ &amp;令y&#x27;=0\implies x=0(驻点)\\ &amp;2.\begin{cases}n为偶数\begin{cases}x&lt;0\\x&gt;0\end{cases}\to y&#x27;(x)&lt;0\to x=0不是极值点\\n为奇数\begin{cases}x&lt;0\to y&#x27;(x)&gt;0\\x&gt;0\to y&#x27;(x)&lt;0\end{cases}\to x=0是极大值点\end{cases}\\ [例2]&amp;\color{maroon}{\begin{cases}x^{2x},x&gt;0\\xe^x+1,x\leq0\end{cases}求f&#x27;(x)并求f(x)的极值}\\ &amp;1.x&gt;0,f&#x27;(x)=(x^{2x})&#x27;=(e^{2x\ln x})&#x27;=e^{2x\ln x}\cdot(2\ln x+x)=2x^{2x}\cdot(\ln x+1)\\ &amp;x&lt;0,f&#x27;(x)=e^x+x\cdot e^x=(1+x)e^x\\ &amp;x=0,f&#x27;_+(0)=\lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^+}\frac{e^{2x\ln x}-1}{x}=-\infty,不存在\\ &amp;则f&#x27;(x)=\begin{cases}2x^{2x}\cdot(\ln x+1),x&gt;0\\(1+x)e^x,x&lt;0\end{cases}\\ &amp;2.令2x^{2x}\cdot(\ln x+1)=0\implies x=\frac1e\iff0&lt; x&lt;\frac1e\to f&#x27;(x)&lt;0\qquad x&gt;\frac1e\to f&#x27;(x)&gt;0\\ &amp;\lim_{x\to0^+}x^{2x}=e^0=1=f(0),\therefore 极小值f(\frac1e)=e^{-\frac2e}\\ &amp;令(1+x)e^x=0\implies x=-1\iff x&lt;-1\to f&#x27;(x)&lt;0\qquad x&gt;-1\implies f&#x27;(x)&gt;0\\ &amp;\therefore极小值f(-1)=1-\frac1e且极大值f(0)=1\\ [例3]&amp;\color{maroon}求双曲线y_1=\frac1x与抛物线y_2=\sqrt x的交角\\ &amp;交点(1,1),y_1&#x27;(1)=(-\frac1{x^2})|_{x=1}=-1=\tan\alpha\\ &amp;y_2&#x27;(1)=(\frac1{2\sqrt x})|_{x=1}=\frac12=\tan\beta\\ &amp;\implies r=\alpha-\beta=\frac34\pi-\arctan\frac12\\ [例4]&amp;\color{maroon}求函数f(x)=|x|e^{-|x-1|}的极值\\ &amp;f(x)=\begin{cases}-xe^{x-1},x&lt;0\\0,x=0\\xe^{x-1},0&lt; x&lt;1\\ 1,x=1\\xe^{1-x},x&gt;1\end{cases}\qquad f&#x27;(x)=\begin{cases}-e^{x-1}-xe^{x-1},x&lt;0\\e^{x-1}+xe^{x-1},0&lt; x&lt;1\\ e^{1-x}-xe^{1_x},x&gt;1\end{cases}\\ &amp;f&#x27;_(0)=-e^{-1},f&#x27;_+(0)=e^{-1},\therefore f&#x27;(0)不存在\\ &amp;f&#x27;_(1)=2,f&#x27;_+(1)=0,\therefore f&#x27;(1)不存在\\ &amp;知x_1=-1,x_2=0,x_3=1,则x_1=-1为极大点,x_2=0为极小点,x_3=1为极大点\\ [例5]&amp;\color{maroon}设正值函数f(x)在(1,+\infty)内连续,求函数F(x)=\int_1^x[(\frac2x+\ln x)-(\frac2t+\ln t)]f(t)dt的最小值点\\ &amp;F(x)=\int_1^x(\frac2x+\ln x)f(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &amp;=(\frac2x+\ln x)\int_1^xf(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &amp; \implies F&#x27;(x)=(-\frac2{x^2}+\frac1x)\int_1^xf(t)dt+(\frac2x+\ln x)F(x)-(\frac2x+\ln x)f(x)\\ &amp;由F&#x27;(x)=0知x=2是唯一极小值点,\therefore x=2是最小值点\\ [例6]&amp;\color{maroon}设f(x)=\begin{cases}\lim_{n\to\infty}\frac1n(1+\cos\frac xn+\cos\frac{2x}n+\cdots+\cos\frac{n-1}nx),x&gt;0\\1,x=0\\f(-x),x&lt;0\end{cases}\\ &amp;\color{maroon}(1)求f&#x27;(0)\qquad(2)求f(x)在[-\pi,\pi]上的最大值\\ (1)&amp;x&gt;0时,f(x)=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac inx\cdot\frac1n=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac xni\cdot\frac xn\cdot\frac1x\\ &amp;=\frac1x\int_0^x\cos tdt=\frac{\sin x}{x}\implies f(x)=\begin{cases}\frac{\sin x}{x},x&gt;0\\1,x=0\\ \frac{\sin x}x,x&lt;0\end{cases}为偶函数\\ &amp;f&#x27;(0)=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0}\frac{\frac{\sin x}x-1}{x}=\lim_{x\to0}\frac{\sin x-x}{x^2}=0\\ (2)&amp;只研究[0,\pi],f&#x27;(x)=(\frac{\sin x}{x})&#x27;=\frac{x\cos x-\sin x}{x^2}\\ &amp;令g(x)=x\cos x-\sin x\\ &amp;则g&#x27;(x)=\cos x+x(-\sin x)-\cos x=-x\sin x\leq0\\ &amp;\implies g(x)单调递减,g(0)=0\implies g(x)&lt;0\\ &amp;\implies f&#x27;(x)&lt;0\implies f(x)单调递减,f(0)=1,f(\pi)=0\implies [0,1]\\ [例7]&amp;\color{maroon}已知f&#x27;(-x)=x[f&#x27;(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点\\ &amp;f&#x27;(-1x)=x[f&#x27;(x)+1]\implies f&#x27;(x)=-x[f&#x27;(x)+1]\\ &amp;代入,得f&#x27;(x)=-x[x[f&#x27;(x)+1]+1]\implies f&#x27;(x)=\frac{-x^2-x}{1+x^2}\\ &amp;由f&#x27;(x)=0,知x_1=0,x_2=-1\\ &amp;\therefore x_1=0是极大值点,x_2=-1是极小值点\\ \end{aligned} [1][2][3][4][5][6](1)(2)[7]x0使x{f(x)f(x0)f(x)f(x0)y=f(x)If(x)>0,y=f(x)If(x)<0,:{1.f(x)=0x02.(x0δ,x0),f(x)?0,(x0,x0+δ),f(x)?0,x0y=k=0nk!xkex(anxn/)y=k=0nk!xkex=(1+x+2!x2++n!xn)ex1.y=(1+x+2!x2++n1xn1)ex+(1+x+2!x2++n!xn)ex(1)=n!xnexy=0x=0()2.n{x<0x>0y(x)<0x=0n{x<0y(x)>0x>0y(x)<0x=0{x2x,x>0xex+1,x0f(x)f(x)1.x>0,f(x)=(x2x)=(e2xlnx)=e2xlnx(2lnx+x)=2x2x(lnx+1)x<0,f(x)=ex+xex=(1+x)exx=0,f+(0)=x0+limx0f(x)f(0)=x0+limxe2xlnx1=,f(x)={2x2x(lnx+1),x>0(1+x)ex,x<02.2x2x(lnx+1)=0x=e10<x<e1f(x)<0x>e1f(x)>0x0+limx2x=e0=1=f(0),f(e1)=ee2(1+x)ex=0x=1x<1f(x)<0x>1f(x)>0f(1)=1e1f(0)=1线y1=x1线y2=x (1,1),y1(1)=(x21)x=1=1=tanαy2(1)=(2x 1)x=1=21=tanβr=αβ=43πarctan21f(x)=xex1f(x)=xex1,x<00,x=0xex1,0<x<11,x=1xe1x,x>1f(x)=ex1xex1,x<0ex1+xex1,0<x<1e1xxe1x,x>1f(0)=e1,f+(0)=e1,f(0)f(1)=2,f+(1)=0,f(1)x1=1,x2=0,x3=1,x1=1x2=0x3=1f(x)(1,+)F(x)=1x[(x2+lnx)(t2+lnt)]f(t)dtF(x)=1x(x2+lnx)f(t)dt1x(t2+lnt)f(t)dt=(x2+lnx)1xf(t)dt1x(t2+lnt)f(t)dtF(x)=(x22+x1)1xf(t)dt+(x2+lnx)F(x)(x2+lnx)f(x)F(x)=0x=2,x=2f(x)=limnn1(1+cosnx+cosn2x++cosnn1x),x>01,x=0f(x),x<0(1)f(0)(2)f(x)[π,π]x>0,f(x)=nlimi=0n1cosnixn1=nlimi=0n1cosnxinxx1=x10xcostdt=xsinxf(x)=xsinx,x>01,x=0xsinx,x<0f(0)=x0limx0f(x)f(0)=x0limxxsinx1=x0limx2sinxx=0[0,π],f(x)=(xsinx)=x2xcosxsinxg(x)=xcosxsinxg(x)=cosx+x(sinx)cosx=xsinx0g(x)g(0)=0g(x)<0f(x)<0f(x),f(0)=1,f(π)=0[0,1]f(x)=x[f(x)+1],f(x)f(1x)=x[f(x)+1]f(x)=x[f(x)+1],f(x)=x[x[f(x)+1]+1]f(x)=1+x2x2xf(x)=0,x1=0,x2=1x1=0x2=1

拐点、凹凸性

凹 凸 性 判 别 : 设 函 数 f ( x ) 在 I 上 二 阶 可 导 , 则 f ′ ′ ( x ) &gt; 0 为 凹 , f ′ ′ ( x ) &lt; 0 为 凸 拐 点 : 设 f ′ ′ ( x 0 ) 存 在 , 且 点 ( x 0 , f ( x 0 ) ) 为 曲 线 上 的 拐 点 , 则 f ′ ′ ( x 0 ) = 0 参 数 方 程 求 导 : { x = x ( t ) y = y ( t ) → { d y d x = d y / d t d x / d t = y ′ ( t x ′ ( t ) = f ( t ) d 2 y d x 2 = d ( d y / d x ) d x = d f ( t ) / d t d x / d t [ 例 ] y ( x ) = { x = 1 3 t 3 + t + 1 3 y = 1 3 t 3 − t + 1 3 , 求 y = y ( x ) 的 极 值 、 凹 凸 性 和 拐 点 ( 参 数 方 程 → 凹 凸 性 / 拐 点 ) [ 分 析 ] d y d x = y ′ ( t ) x ′ ( t ) = t 2 − 1 t 2 + 1 d 2 y d x 2 = f ′ ( t ) x ′ ( t ) = [ 2 t ( t 2 + 1 ) − ( t 2 − 1 ) ⋅ 2 t ] / ( t 2 + 1 ) 2 t 2 + 1 = 2 t 3 + 2 t − 2 t 3 + 2 t ( t 2 + 1 ) 2 ⋅ 1 ( t 2 + 1 ) = 4 t ( t 2 + 1 ) 3 令 d y d x = 0 → t = ± 1 d 2 y d x 2 → t = 0 t ( − ∞ , − 1 ) − 1 ( − 1 , 0 ) 0 ( 0 , 1 ) 1 ( 1 , + ∞ ) x ( − ∞ , − 1 ) − 1 ( − 1 , 1 3 ) 1 3 ( 1 3 , 3 5 ) 3 5 ( 3 5 , + ∞ ) y ′ + 0 − − 1 − 0 + y ′ ′ − − − 0 + + + \begin{aligned} &amp;\color{blue}凹凸性判别:设函数f(x)在I上二阶可导,则f&#x27;&#x27;(x)&gt;0为凹,f&#x27;&#x27;(x)&lt;0为凸\\ &amp;拐点:设f&#x27;&#x27;(x_0)存在,且点(x_0,f(x_0))为曲线上的拐点,则f&#x27;&#x27;(x_0)=0\\ &amp;参数方程求导:\begin{cases}x=x(t)\\y=y(t)\end{cases}\to\begin{cases}\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{y&#x27;(t}{x&#x27;(t)}=f(t)\\ \frac{d^2y}{dx^2}=\frac{d(dy/dx)}{dx}=\frac{df(t)/dt}{dx/dt}\end{cases}\\ &amp;\color{maroon}{[例]y(x)=\begin{cases}x=\frac13t^3+t+\frac13\\y=\frac13t^3-t+\frac13\end{cases},求y=y(x)的极值、凹凸性和拐点}\color{green}{(参数方程\to凹凸性/拐点)}\\ &amp;\color{black}[分析]\frac{dy}{dx}=\frac{y&#x27;(t)}{x&#x27;(t)}=\frac{t^2-1}{t^2+1}\\ &amp;\frac{d^2y}{dx^2}=\frac{f&#x27;(t)}{x&#x27;(t)}=\frac{[2t(t^2+1)-(t^2-1)\cdot2t]/(t^2+1)^2}{t^2+1}=\frac{2t^3+2t-2t^3+2t}{(t^2+1)^2}\cdot\frac1{(t^2+1)}=\frac{4t}{(t^2+1)^3}\\ &amp;令\frac{dy}{dx}=0\to t=\pm1\qquad\frac{d^2y}{dx^2}\to t=0\\&amp; \begin{array}{c|c|c|c|c|c|c|c} t &amp; (-\infty,-1) &amp; -1 &amp; (-1,0) &amp; 0 &amp; (0,1) &amp; 1 &amp; (1,+\infty) \\ \hline x &amp; (-\infty,-1) &amp; -1 &amp; (-1,\frac13) &amp; \frac13 &amp; (\frac13,\frac35) &amp; \frac35 &amp; (\frac35,+\infty) \\ \hline y&#x27; &amp; + &amp; 0 &amp; - &amp; -1 &amp; - &amp; 0 &amp; + \\ \hline y&#x27;&#x27; &amp; - &amp; - &amp; - &amp; 0 &amp; + &amp; + &amp; + \end{array}\qquad\qquad\qquad\qquad\qquad\quad\qquad \end{aligned} f(x)If(x)>0f(x)<0f(x0)(x0,f(x0))线f(x0)=0{x=x(t)y=y(t){dxdy=dx/dtdy/dt=x(t)y(t=f(t)dx2d2y=dxd(dy/dx)=dx/dtdf(t)/dt[]y(x)={x=31t3+t+31y=31t3t+31y=y(x)(/)[]dxdy=x(t)y(t)=t2+1t21dx2d2y=x(t)f(t)=t2+1[2t(t2+1)(t21)2t]/(t2+1)2=(t2+1)22t3+2t2t3+2t(t2+1)1=(t2+1)34tdxdy=0t=±1dx2d2yt=0txyy(,1)(,1)+110(1,0)(1,31)03110(0,1)(31,53)+1530+(1,+)(53,+)++

渐近线

判 别 { 水 平 渐 近 线 : lim ⁡ x → ∞ f ( x ) = A 铅 锤 渐 近 线 : lim ⁡ x → x 0 = ∞ 斜 渐 近 线 : lim ⁡ x → + ∞ y ( x ) x = k ( 同 阶 才 可 以 ) , 若 k ≠ 0 , 则 求 b = lim ⁡ x → + ∞ [ y ( x ) − k x ] , 得 y = k x + b [ 例 1 ] 求 y = 4 x 2 + x ⋅ ln ⁡ ( 2 + 1 x ) 的 全 部 渐 近 线 ( f ( x ) 复 杂 → 渐 近 线 ) [ 分 析 ] 由 两 个 分 部 得 定 义 域 x ∈ ( − ∞ , − 1 2 ) ⋃ ( 0 , + ∞ ) 1. lim ⁡ x → − 1 2 − 0 4 x 2 + x ⋅ ln ⁡ ( 2 + 1 x ) = − ∞ &ThickSpace; ⟺ &ThickSpace; x = − 1 2 是 一 条 铅 锤 渐 近 线 lim ⁡ x → 0 + 4 x 2 + x ⋅ ln ⁡ ( 2 + 1 x ) = lim ⁡ x → 0 + 4 x 2 + x ⋅ ln ⁡ ( 2 x + 1 ) − lim ⁡ x → 0 + 4 x 2 + x ⋅ ln ⁡ x = − lim ⁡ x → 0 + 4 x + 1 ⋅ x ⋅ ln ⁡ x = 0 2. lim ⁡ x → + ∞ 4 x 2 + x ⋅ ln ⁡ ( 2 + 1 x ) = + ∞ , 没 有 水 平 渐 近 线 3. lim ⁡ x → + ∞ y x = lim ⁡ x → + ∞ 4 + 1 x ⋅ ln ⁡ ( 2 + 1 x ) = 2 ln ⁡ 2 ≠ 0 , 故 k   ∃ b = lim ⁡ x → + ∞ [ y − k x ] = lim ⁡ x → + ∞ ( 4 x 2 + x ln ⁡ ( 2 + 1 x ) − 2 ln ⁡ 2 ⋅ x ) , 令 x = 1 t b = lim ⁡ t → 0 + ( 4 + t t 2 ln ⁡ ( 2 + t ) − 2 ln ⁡ 2 t ) = lim ⁡ t → 0 + 4 + t ln ⁡ ( 2 + t ) − 2 ln ⁡ 2 t = lim ⁡ t → 0 + 1 2 4 + t ln ⁡ ( 2 + t ) + 4 + t 2 + t = 1 4 ln ⁡ 2 + 1 y = 2 ln ⁡ 2 ⋅ x + 1 4 ln ⁡ 2 + 1 为 斜 渐 近 线 当 x → − ∞ 时 , y = − a x − b = − 2 ln ⁡ 2 ⋅ x − ( 1 4 ln ⁡ 2 + 1 ) 为 另 一 斜 渐 近 线 [ 注 ] lim ⁡ x → 0 + x α ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x x − α = lim ⁡ x → 0 + x − 1 − α x − α − 1 = − 1 α lim ⁡ x → 0 + x α = 0 [ 例 2 ] 求 下 列 各 题 ( 1 ) x &gt; 0 , y = x sin ⁡ 1 x , 求 其 水 平 渐 近 线 ( 2 ) x &gt; 0 , y = x + sin ⁡ 1 x , 求 其 斜 渐 近 线 ( 3 ) y = ln ⁡ ( e − 1 x ) , 求 其 铅 垂 渐 近 线 ( 1 ) lim ⁡ x → + ∞ x sin ⁡ 1 x = lim ⁡ x → + ∞ sin ⁡ 1 x 1 x = 1 &ThickSpace; ⟹ &ThickSpace; y = 1 为 水 平 渐 近 线 ( 2 ) lim ⁡ x → + ∞ y x = lim ⁡ x → + ∞ x + sin ⁡ 1 x x = 1 = a b = lim ⁡ x → + ∞ [ y ( a x ) − a x ] = lim ⁡ x → + ∞ sin ⁡ 1 x = 0 &ThickSpace; ⟹ &ThickSpace; y = a x + b 为 斜 渐 近 线 ( 3 ) 有 e − 1 x &gt; 0 , x &gt; 1 e 故 lim ⁡ x → 0 − ln ⁡ ( e − 1 x ) = + ∞ &ThickSpace; ⟹ &ThickSpace; x = 0 是 铅 垂 渐 近 线 lim ⁡ x → 1 e + 0 ln ⁡ ( e − 1 x ) = − ∞ &ThickSpace; ⟹ &ThickSpace; x = 1 e 是 铅 垂 渐 近 线 \begin{aligned} &amp;\color{blue}判别\begin{cases}水平渐近线:\lim_{x\to\infty}f(x)=A\\ 铅锤渐近线:\lim_{x\to x_0}=\infty\\ 斜渐近线:\lim_{x\to+\infty}\frac{y(x)}x=k(同阶才可以),若k\neq0,则求b=\lim_{x\to+\infty}[y(x)-kx],得y=kx+b\end{cases}\\ [例1]&amp;\color{maroon}{求y=\sqrt{4x^2+x}\cdot\ln(2+\frac1x)的全部渐近线}\color{green}{(f(x)复杂\to渐近线)}\\ &amp;\color{black}[分析]由两个分部得定义域x\in(-\infty,-\frac12)\bigcup(0,+\infty)\\ 1.&amp;\lim_{x\to-\frac12-0}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=-\infty\iff x=-\frac12是一条铅锤渐近线\\ &amp;\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln(2x+1)-\lim_{x\to0^+}\sqrt{4x^2+x}\cdot\ln x\\ &amp;=-\lim_{x\to0^+}\sqrt{4x+1}\cdot\sqrt x\cdot\ln x=0\\ 2.&amp;\lim_{x\to+\infty}\sqrt{4x^2+x}\cdot\ln(2+\frac1x)=+\infty,没有水平渐近线\\ 3.&amp;\lim_{x\to+\infty}\frac yx=\lim_{x\to+\infty}\sqrt{4+\frac1x}\cdot\ln(2+\frac1x)=2\ln 2\neq0,故k\ \exists\\ &amp;b=\lim_{x\to+\infty}[y-kx]=\lim_{x\to+\infty}(\sqrt{4x^2+x}\ln(2+\frac1x)-2\ln2\cdot x),令x=\frac1t\\ &amp;b=\lim_{t\to0^+}(\sqrt{\frac{4+t}{t^2}}\ln(2+t)-\frac{2\ln2}{t})=\lim_{t\to0^+}\frac{\sqrt{4+t}\ln(2+t)-2\ln2}{t}\\ &amp;=\lim_{t\to0^+}\frac{1}{2\sqrt{4+t}}\ln(2+t)+\frac{\sqrt{4+t}}{2+t}=\frac14\ln2+1\\ &amp;y=2\ln2\cdot x+\frac14\ln2+1为斜渐近线\\ &amp;当x\to-\infty时,y=-ax-b=-2\ln2\cdot x-(\frac14\ln2+1)为另一斜渐近线\\ &amp;\color{red}{[注]\lim_{x\to0^+}x^{\alpha}\ln x=\lim_{x\to0^+}\frac{\ln x}{x^{-\alpha}}=\lim_{x\to0^+}\frac{x^{-1}}{-\alpha x^{-\alpha-1}}=-\frac1{\alpha}\lim_{x\to0^+}x^\alpha=0}\\ [例2]&amp;\color{maroon}求下列各题\\ (1)&amp;\color{maroon}x&gt;0,y=x\sin\frac1x,求其水平渐近线\\ (2)&amp;\color{maroon}x&gt;0,y=x+\sin\frac1x,求其斜渐近线\\ (3)&amp;\color{maroon}y=\ln(e-\frac1x),求其铅垂渐近线\\ (1)&amp;\lim_{x\to+\infty}x\sin\frac1x=\lim_{x\to+\infty}\frac{\sin\frac1x}{\frac1x}=1\implies y=1为水平渐近线\\ (2)&amp;\lim_{x\to+\infty}\frac{y}x=\lim_{x\to+\infty}\frac{x+\sin\frac1x}x=1=a\\ &amp;b=\lim_{x\to+\infty}[y(ax)-ax]=\lim_{x\to+\infty}\sin\frac1x=0\implies y=ax+b为斜渐近线\\ (3)&amp;有e-\frac1x&gt;0,x&gt;\frac1e\\ &amp;故\lim_{x\to0^-}\ln(e-\frac1x)=+\infty\implies x=0是铅垂渐近线\\ &amp;\lim_{x\to\frac1e^{+0}}\ln(e-\frac1x)=-\infty\implies x=\frac1e是铅垂渐近线\\ \end{aligned} [1]1.2.3.[2](1)(2)(3)(1)(2)(3)线:limxf(x)=A线:limxx0=线:limx+xy(x)=k()k̸=0,b=limx+[y(x)kx],y=kx+by=4x2+x ln(2+x1)线(f(x)线)[]x(,21)(0,+)x210lim4x2+x ln(2+x1)=x=21线x0+lim4x2+x ln(2+x1)=x0+lim4x2+x ln(2x+1)x0+lim4x2+x lnx=x0+lim4x+1 x lnx=0x+lim4x2+x ln(2+x1)=+,线x+limxy=x+lim4+x1 ln(2+x1)=2ln2̸=0,k b=x+lim[ykx]=x+lim(4x2+x ln(2+x1)2ln2x),x=t1b=t0+lim(t24+t ln(2+t)t2ln2)=t0+limt4+t ln(2+t)2ln2=t0+lim24+t 1ln(2+t)+2+t4+t =41ln2+1y=2ln2x+41ln2+1线xy=axb=2ln2x(41ln2+1)线[]x0+limxαlnx=x0+limxαlnx=x0+limαxα1x1=α1x0+limxα=0x>0,y=xsinx1,线x>0,y=x+sinx1,线y=ln(ex1),线x+limxsinx1=x+limx1sinx1=1y=1线x+limxy=x+limxx+sinx1=1=ab=x+lim[y(ax)ax]=x+limsinx1=0y=ax+b线ex1>0,x>e1x0limln(ex1)=+x=0线xe1+0limln(ex1)=x=e1线

导数的证明性应用

中值定理

设 f ( x ) 在 [ a , b ] 上 连 续 ( 涉 及 函 数 f ( x ) 的 中 值 定 理 ) 1. 有 界 性 定 理 : ∣ f ( x ) ∣ ≤ k 2. 最 值 定 理 : m ≤ f ( x ) ≤ M 3. 介 值 定 理 : 若 m ≤ μ ≤ M , ∃ ξ ∈ [ a , b ] , 使 f ( ξ ) = μ 4. 零 点 定 理 : 若 f ( a ) , f ( b ) &lt; 0 &ThickSpace; ⟹ &ThickSpace; ∃ ξ ∈ ( a , b ) , 使 f ( ξ ) = 0 涉 及 到 导 数 f ′ ( x ) 的 中 值 定 理 5. 费 马 定 理 : 设 f ( x ) 在 x 0 处 { 可 导 取 极 值 &ThickSpace; ⟹ &ThickSpace; f ′ ( x 0 ) = 0 6. 罗 尔 定 理 : 设 f ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 f ( a ) = f ( b ) &ThickSpace; ⟹ &ThickSpace; ∃ f ′ ( ξ ) = 0 , ξ ∈ ( a , b ) 7. 拉 格 朗 日 中 值 定 理 : 设 f ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 &ThickSpace; ⟹ &ThickSpace; f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) , ∃ ξ ∈ ( a , b ) 8. 柯 西 中 值 定 理 : 设 f ( x ) , g ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 g ′ ( x ) ̸ = 0 &ThickSpace; ⟹ &ThickSpace; f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) , ∃ ξ ∈ ( a , b ) 9. 泰 勒 公 式 : f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + { ∘ ( ( x = x 0 ) n ) f ( n ) ( ξ ) n ! ( x − x 0 ) n + 1 麦 克 劳 林 公 式 : f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + { ∘ ( x n ) 佩 亚 诺 余 项 f n + 1 ( ξ ) ( n + 1 ) ! x n + 1 拉 格 朗 日 余 项 10. 积 分 中 值 定 理 : 设 f ( x ) 在 [ a , b ] 上 连 续 &ThickSpace; ⟹ &ThickSpace; ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , ∃ ξ ∈ [ a , b ] [ 注 ] 称 { f ^ = 1 b − a ∫ a b f ( x ) d x f ^ = 1 n ∑ i = 1 n f ( x i ) 叫 f ( x ) 在 [ a , b ] 上 的 平 均 值 \begin{aligned} &amp;设f(x)在[a,b]上连续\color{grey}{(涉及函数f(x)的中值定理)}\\ &amp;\color{black}1.有界性定理: |f(x)|\leq k\\ &amp;2.最值定理: m\leq f(x)\leq M\\ &amp;3.介值定理: 若m\leq \mu\leq M,\exists\xi\in[a,b],使f(\xi)=\mu\\ &amp;4.零点定理:若f(a),f(b)&lt;0\implies\exists\xi\in(a,b),使f(\xi)=0\\ &amp;\color{grey}{涉及到导数f&#x27;(x)的中值定理}\\ &amp;\color{black}5.费马定理:设f(x)在x_0处\begin{cases}可导\\取极值\end{cases}\implies f&#x27;(x_0)=0\\ &amp;6.罗尔定理:设f(x)\begin{cases}[a,b]连续\\(a,b)可导\\f(a)=f(b)\end{cases}\implies \exists f&#x27;(\xi)=0,\xi\in(a,b)\\ &amp;7.拉格朗日中值定理:设f(x)\begin{cases}[a,b]连续\\(a,b)可导\end{cases}\implies f(b)-f(a)=f&#x27;(\xi)(b-a),\exists\xi\in(a,b)\\ &amp;8.柯西中值定理:设f(x),g(x)\begin{cases}[a,b]连续\\(a,b)可导\\g&#x27;(x)\not=0\end{cases}\implies\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f&#x27;(\xi)}{g&#x27;(\xi)},\exists\xi\in(a,b)\\ &amp;9.泰勒公式:\\ &amp;f(x)=f(x_0)+f&#x27;(x_0)(x-x_0)+\frac{f&#x27;&#x27;(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\begin{cases}\circ((x=x_0)^n)\\\frac{f^{(n)}(\xi)}{n!}(x-x_0)^{n+1}\end{cases}\\ &amp;麦克劳林公式:f(x)=f(0)+f&#x27;(0)x+\frac{f&#x27;&#x27;(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\begin{cases}\circ(x^n)佩亚诺余项\\\frac{f^{n+1}(\xi)}{(n+1)!}x^{n+1}拉格朗日余项\end{cases}\\ &amp;10.积分中值定理:设f(x)在[a,b]上连续\implies\int_a^bf(x)dx=f(\xi)(b-a),\exists\xi\in[a,b]\\ &amp;\color{grey}{[注]称\begin{cases}\hat f=\frac1{b-a}\int_a^bf(x)dx\\\hat f=\frac1n\sum_{i=1}^nf(x_i)\end{cases}叫f(x)在[a,b]上的平均值} \end{aligned} f(x)[a,b](f(x))1.f(x)k2.mf(x)M3.mμM,ξ[a,b],使f(ξ)=μ4.f(a),f(b)<0ξ(a,b),使f(ξ)=0f(x)5.f(x)x0{f(x0)=06.f(x)[a,b](a,b)f(a)=f(b)f(ξ)=0,ξ(a,b)7.f(x){[a,b](a,b)f(b)f(a)=f(ξ)(ba),ξ(a,b)8.西f(x),g(x)[a,b](a,b)g(x)̸=0g(b)g(a)f(b)f(a)=g(ξ)f(ξ),ξ(a,b)9.f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+{((x=x0)n)n!f(n)(ξ)(xx0)n+1f(x)=f(0)+f(0)x+2!f(0)x2++n!f(n)(0)xn+{(xn)(n+1)!fn+1(ξ)xn+110.f(x)[a,b]abf(x)dx=f(ξ)(ba),ξ[a,b][]{f^=ba1abf(x)dxf^=n1i=1nf(xi)f(x)[a,b]

1.确定区间

2.确定辅助函数

3.确定点的值

4.确定所用定理

确定辅助函数

( 1 ) 简 单 情 形 : 题 设 f ( x ) 即 为 辅 助 函 数 ( 2 ) 复 杂 情 形 { 1. 乘 积 求 导 公 式 逆 用 { ( u v ) ′ = u ′ v + u v ′ ( u v ) ′ ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ 2. 商 的 求 导 公 式 逆 用 { 1. ( f ( x ) x ) ′ = f ′ ( x ) x − f ( x ) x 2 2. [ f ′ ( x ) f ( x ) ] ′ = f ′ ′ ( x ) f ( x ) − [ f ′ ( x ) ] 2 f 2 ( x ) 3. [ ln ⁡ f ( x ) ] ′ ′ = f ′ ′ ( x ) f ( x ) − [ f ′ ( x ) ] 2 f 2 ( x ) 3. 变 现 积 分 : 若 出 现 ∫ a b f ( x ) d x , 可 能 是 令 F ( x ) = ∫ a x f ( t ) d t 4. 若 复 杂 到 作 不 出 辅 助 函 数 , 则 题 设 给 出 F ( x ) 或 F ( a ) , 提 示 考 生 令 其 为 辅 助 函 数 \begin{aligned} (1)&amp;简单情形:题设f(x)即为辅助函数\\ (2)&amp;复杂情形\\ &amp;\begin{cases}1.乘积求导公式逆用\begin{cases}(uv)&#x27;=u&#x27;v+uv&#x27;\\(uv)&#x27;&#x27;=u&#x27;&#x27;v+2u&#x27;v&#x27;+uv&#x27;&#x27;\end{cases}\\2.商的求导公式逆用\begin{cases}1.(\frac{f(x)}{x})&#x27;=\frac{f&#x27;(x)x-f(x)}{x^2}\\2.[\frac{f&#x27;(x)}{f(x)}]&#x27;=\frac{f&#x27;&#x27;(x)f(x)-[f&#x27;(x)]^2}{f^2(x)}\\3.[\ln f(x)]&#x27;&#x27;=\frac{f&#x27;&#x27;(x)f(x)-[f&#x27;(x)]^2}{f^2(x)}\end{cases}\\3.变现积分:若出现\int_a^bf(x)dx,可能是令F(x)=\int_a^xf(t)dt\\4.若复杂到作不出辅助函数,则题设给出F(x)或F(a),提示考生令其为辅助函数\end{cases} \end{aligned} (1)(2)f(x)1.{(uv)=uv+uv(uv)=uv+2uv+uv2.1.(xf(x))=x2f(x)xf(x)2.[f(x)f(x)]=f2(x)f(x)f(x)[f(x)]23.[lnf(x)]=f2(x)f(x)f(x)[f(x)]23.:abf(x)dx,F(x)=axf(t)dt4.F(x)F(a)

确定使用定理

1. 介 值 定 理 : 证 f ( ξ ) = μ 2. 费 马 定 理 : 证 f ′ ( ξ ) = 0 ( 最 / 极 值 , 区 间 内 ) 3. 罗 尔 定 理 : 证 f ′ ( ξ ) = 0 ( f ( a ) = f ( b ) ) 4. 拉 格 朗 日 : { 1. 题 设 中 有 f , f ′ 得 关 系 , 或 f − f 2. 证 f ( x ) ≥ A 或 f ′ ( ξ ) ≥ A 3. 证 f ( n ) ( ξ ) ≥ A 4. θ 5. 单 调 性 ( f , f ′ ) 5. 泰 勒 : { 1. 题 设 中 有 f 与 f ( n ) , n &gt; 1 的 关 系 2. 证 f ( n ) ( ξ ) ≥ A 6. 柯 西 \begin{aligned} 1.&amp;介值定理:证f(\xi)=\mu\\ 2.&amp;费马定理:证f&#x27;(\xi)=0(最/极值,区间内)\\ 3.&amp;罗尔定理:证f&#x27;(\xi)=0(f(a)=f(b))\\ 4.&amp;拉格朗日:\begin{cases}1.题设中有f,f&#x27;得关系,或f-f\\2.证f(x)\geq A或f&#x27;(\xi)\geq A\\3.证f^{(n)}(\xi)\geq A\\4.\theta\\5.单调性(f,f&#x27;)\end{cases}\\ 5.&amp;泰勒:\begin{cases}1.题设中有f与f^{(n)},n&gt;1的关系\\2.证f^{(n)}(\xi)\geq A\end{cases}\\ 6.&amp;柯西 \end{aligned} 1.2.3.4.5.6.:f(ξ)=μ:f(ξ)=0(/):f(ξ)=0(f(a)=f(b)):1.f,fff2.f(x)Af(ξ)A3.f(n)(ξ)A4.θ5.(f,f):{1.ff(n),n>12.f(n)(ξ)A西

确定点的信息

1. 用 题 设 告 知 , 如 f ( a ) = 0 2. 用 极 限 : { 1. 连 续 定 义 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) 2. 导 数 定 义 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 3. 保 号 ( 不 等 式 脱 帽 法 ) 4. 取 极 限 3. 用 积 分 : { 1. f ‾ = ∫ a b f ( x ) d x b − a = f ( ξ ) ( 均 值 定 义 ) 2. F ( x ) = ∫ a x f ( t ) d t ( 原 函 数 定 义 ) 3. 保 号 : 若 f ( x ) ≥ 0 不 恒 = 0 &ThickSpace; ⟹ &ThickSpace; ∫ a b f ( x ) d x &gt; 0 4. 取 积 分 4. 用 介 值 : f ( a ) = A , f ( b ) = B , A &lt; μ &lt; B &ThickSpace; ⟹ &ThickSpace; f ( ξ ) = μ 5. 用 费 马 &ThickSpace; ⟹ &ThickSpace; f ′ ( ξ ) = 0 6. 用 奇 偶 &ThickSpace; ⟹ &ThickSpace; { 若 f ( x ) 奇 &ThickSpace; ⟹ &ThickSpace; f ( 0 ) = 0 若 f ( x ) 偶 &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) 奇 &ThickSpace; ⟹ &ThickSpace; f ′ ( 0 ) = 0 7. 用 几 何 : { 1. 存 在 相 等 的 最 大 值 : f ( a ) = f ( b ) 2. f ( x ) 与 g ( x ) 交 于 a 点 &ThickSpace; ⟹ &ThickSpace; F ( a ) = f ( a ) − g ( a ) = 0 3. f ( x ) 与 g ( x ) 在 a 点 处 有 公 切 线 &ThickSpace; ⟹ &ThickSpace; F ′ ( a ) = f ′ ( a ) − g ′ ( a ) = 0 8. 用 行 列 式 : 如 f ( x ) = ∣ 1 x 4 2 2 x 7 3 3 x 9 ∣ &ThickSpace; ⟹ &ThickSpace; f ( 0 ) = 0 , f ( 1 ) = 0 &ThickSpace; ⟹ &ThickSpace; 罗 尔 定 理 的 f ′ ( ξ ) = 0 \begin{aligned} 1.&amp;用题设告知,如f(a)=0\\ 2.&amp;用极限:\begin{cases}1.连续定义\lim_{x\to x_0}f(x)=f(x_0)\\2.导数定义f&#x27;(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\\3.保号(不等式脱帽法)\\4.取极限\end{cases}\\ 3.&amp;用积分:\begin{cases}1.\overline{f}=\frac{\int_a^bf(x)dx}{b-a}=f(\xi)(均值定义)\\2.F(x)=\int_a^xf(t)dt(原函数定义)\\3.保号:若f(x)\geq0不恒=0\implies\int_a^bf(x)dx&gt;0\\4.取积分\end{cases}\\ 4.&amp;用介值:f(a)=A,f(b)=B,A&lt;\mu&lt;B\implies f(\xi)=\mu\\ 5.&amp;用费马\implies f&#x27;(\xi)=0\\ 6.&amp;用奇偶\implies \begin{cases}若f(x)奇\implies f(0)=0\\若f(x)偶\implies f&#x27;(x)奇\implies f&#x27;(0)=0\end{cases}\\ 7.&amp;用几何:\begin{cases}1.存在相等的最大值:f(a)=f(b)\\2.f(x)与g(x)交于a点\implies F(a)=f(a)-g(a)=0\\3.f(x)与g(x)在a点处有公切线\implies F&#x27;(a)=f&#x27;(a)-g&#x27;(a)=0\end{cases}\\ 8.&amp;用行列式:如f(x)=\begin{vmatrix}1&amp;x&amp;4\\2&amp;2x&amp;7\\3&amp;3x&amp;9\end{vmatrix}\implies f(0)=0,f(1)=0\implies 罗尔定理的f&#x27;(\xi)=0\\ \end{aligned} 1.2.3.4.5.6.7.8.f(a)=0:1.limxx0f(x)=f(x0)2.f(x0)=limxx0xx0f(x)f(x0)3.()4.:1.f=baabf(x)dx=f(ξ)()2.F(x)=axf(t)dt()3.:f(x)0=0abf(x)dx>04.f(a)=A,f(b)=B,A<μ<Bf(ξ)=μf(ξ)=0{f(x)f(0)=0f(x)f(x)f(0)=0:1.f(a)=f(b)2.f(x)g(x)aF(a)=f(a)g(a)=03.f(x)g(x)a线F(a)=f(a)g(a)=0:f(x)=123x2x3x479f(0)=0,f(1)=0f(ξ)=0

例题

  [ 例 1 ] 设 l i m x → 0 f ( x ) x = 1 , f ′ ′ ( x ) &gt; 0 , 证 明 f ( x ) ≥ x f ( 0 ) = lim ⁡ x → 0 f ( x ) = lim ⁡ x → 0 f ( x ) x = 0 , 且 1 = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = f ′ ( 0 ) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( ξ ) 2 ( x − x 0 ) 2 即 f ( x ) = f ( 0 ) + f ′ ( 0 ) ( x − 0 ) + f ′ ′ ( ξ ) 2 ( x − 0 ) 2 f ( x ) = x + ∘ ≥ x [ T h ] 若 f ( x ) 在 x = x 0 处 连 续 且 lim ⁡ x → x 0 f ( x ) x − x 0 = A , 则 f ( x 0 ) = 0 , f ′ ( x 0 ) = A [ 证 ] f ( x 0 ) = lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 f ( x ) x − x 0 ( x − x 0 ) = 0 且 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = A [ 例 2 ] 设 f ( x ) 在 [ a , b ] 上 连 续 , ( a . b ) 内 可 导 且 f ( a ) ̸ = f ( b ) , 证 明 ∃ ξ , η ∈ ( a , b ) , 使 得 f ′ ( ξ ) 2 ξ = f ′ ( η ) b + a . a &gt; 0 1. f ( b ) − f ( a ) b 2 − a 2 = f ′ ( ξ ) 2 ξ 2. f ( b ) − f ( a ) = f ′ ( η ) ( b − a ) &ThickSpace; ⟹ &ThickSpace; f ( b ) − f ( a ) = f ′ ( ξ ) 2 ξ ( b 2 − a 2 ) = f ( b ) − f ( a ) = f ′ ( η ) ( b − a ) &ThickSpace; ⟹ &ThickSpace; f ′ ( ξ ) 2 ξ ( b + a ) ( b − a ) = f ′ ( η ) ( b − a ) [ 例 3 ] 设 f ( x ) 在 [ 0 , 4 ] 上 一 阶 可 导 , 且 f ′ ( x ) ≥ 1 4 , f ( 2 ) ≥ 0 , 则 在 [ 3 , 4 ] ‾ 上 必 有 f ( x ) ≥ 1 4 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f ( 3 ) − f ( 2 ) = f ′ ( 3 ) ( 3 − 2 ) &ThickSpace; ⟹ &ThickSpace; f ( 3 ) = f ( 2 ) + f ′ ( 3 ) ≥ 1 4 [ 例 4 ] 设 x &gt; 0 , 证 明 ( 1 ) x + 1 − X = 1 2 x + θ ( x ) , 0 &lt; θ ( x ) &lt; 1 , ( 2 ) 求 lim ⁡ x → + ∞ θ ( x ) ( 1 ) 令 f ( t ) = t , 则 由 拉 氏 定 理 得 x + 1 − x = 1 2 x + θ ( x ) , 其 中 0 &lt; θ ( x ) = ξ − x &lt; 1 ( 2 ) 2 x + θ ( x ) = 1 x + 1 − x = x + 1 + x 4 ( x + θ ( x ) ) = x + 1 + 2 ( x + 1 ) x + x θ ( x ) = x 2 + 1 4 + 1 2 ( x + 1 ) x − x = 1 4 + 1 2 ( x + 1 ) x − x 2 lim ⁡ x → + ∞ θ ( x ) = 1 4 + 1 2 lim ⁡ x → + ∞ ( ( x + 1 ) x − x ) = 1 4 + 1 2 lim ⁡ x → + ∞ 1 ⋅ x ( x + 1 ) x + x = 1 2 [ 例 5 ] 设 f ( x ) = arcsin ⁡ x , ξ 为 f ( x ) 在 [ 0 , b ] 上 拉 氏 中 值 定 理 得 中 值 点 , 0 &lt; b &lt; 1 , 求 lim ⁡ b → 0 + ξ b arcsin ⁡ b − arcsin ⁡ 0 = 1 1 − b 2 ⋅ b &ThickSpace; ⟹ &ThickSpace; ξ = 1 − ( b arcsin ⁡ b ) 2 lim ⁡ b → 0 + ξ b = lim ⁡ b → 0 + 1 − ( b arcsin ⁡ b ) 2 b 令 b = sin ⁡ t 则 I = lim ⁡ t → 0 + 1 − ( sin ⁡ t t ) 2 sin ⁡ t = lim ⁡ t → 0 + t 2 − ( sin ⁡ t ) 2 t sin ⁡ t = lim ⁡ t → 0 + 1 3 t 2 t 2 = 3 3 \begin{aligned} \ [例1]&amp;\color{maroon}设lim_{x\to0}\frac{f(x)}{x}=1,f&#x27;&#x27;(x)&gt;0,证明f(x)\geq x\\ &amp;f(0)=\lim_{x\to0}f(x)=\lim_{x\to0}\frac{f(x)}x=0,且1=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=f&#x27;(0)\\ &amp;f(x)=f(x_0)+f&#x27;(x_0)(x-x_0)+\frac{f&#x27;&#x27;(\xi)}2(x-x_0)^2\\ &amp;即f(x)=f(0)+f&#x27;(0)(x-0)+\frac{f&#x27;&#x27;(\xi)}2(x-0)^2\\ &amp;f(x)=x+\circ\geq x\\ [Th]&amp;若f(x)在x=x_0处连续且\lim_{x\to x_0}\frac{f(x)}{x-x_0}=A,则f(x_0)=0,f&#x27;(x_0)=A\\ [证]&amp;f(x_0)=\lim_{x\to x_0}f(x)=\lim_{x\to x_0}\frac{f(x)}{x-x_0}(x-x_0)=0且f&#x27;(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=A\\ [例2]&amp;\color{maroon}设f(x)在[a,b]上连续,(a.b)内可导且f(a)\not=f(b),证明\exists\xi,\eta\in(a,b),使得\frac{f&#x27;(\xi)}{2\xi}=\frac{f&#x27;(\eta)}{b+a}.a&gt;0\\ &amp;1.\frac{f(b)-f(a)}{b^2-a^2}=\frac{f&#x27;(\xi)}{2\xi}\\ &amp;2.f(b)-f(a)=f&#x27;(\eta)(b-a)\implies f(b)-f(a)=\frac{f&#x27;(\xi)}{2\xi}(b^2-a^2)=f(b)-f(a)=f&#x27;(\eta)(b-a)\\ &amp;\implies \frac{f&#x27;(\xi)}{2\xi}(b+a)(b-a)=f&#x27;(\eta)(b-a)\\ [例3]&amp;\color{maroon}设f(x)在[0,4]上一阶可导,且f&#x27;(x)\geq\frac14,f(2)\geq0,则在\underline{[3,4]}上必有f(x)\geq\frac14\\ &amp;f(b)-f(a)=f&#x27;(\xi)(b-a)\\ &amp;f(3)-f(2)=f&#x27;(3)(3-2)\implies f(3)=f(2)+f&#x27;(3)\geq\frac14\\ [例4]&amp;\color{maroon}设x&gt;0,证明(1)\sqrt{x+1}-\sqrt{X}=\frac{1}{2\sqrt{x+\theta(x)}},0&lt;\theta(x)&lt;1,(2)求\lim_{x\to+\infty}\theta(x)\\ (1)&amp;令f(t)=\sqrt t,则由拉氏定理得\\ &amp;\sqrt{x+1}-\sqrt x=\frac1{2\sqrt{x+\theta(x)}},其中0&lt;\theta(x)=\xi-x&lt;1\\ (2)&amp;2\sqrt{x+\theta(x)}=\frac1{\sqrt{x+1}-\sqrt{x}}=\sqrt{x+1}+\sqrt{x}\\ &amp;4(x+\theta(x))=x+1+2\sqrt{(x+1)x}+x\\ &amp;\theta(x)=\frac{x}2+\frac14+\frac12\sqrt{(x+1)x}-x=\frac14+\frac12\sqrt{(x+1)x}-\frac{x}2\\ &amp;\lim_{x\to+\infty}\theta(x)=\frac14+\frac12\lim_{x\to+\infty}(\sqrt{(x+1)x}-x)=\frac14+\frac12\lim_{x\to+\infty}\frac{1\cdot x}{\sqrt{(x+1)x}+x}=\frac12\\ [例5]&amp;\color{maroon}设f(x)=\arcsin x,\xi为f(x)在[0,b]上拉氏中值定理得中值点,0&lt; b&lt;1,求\lim_{b\to0^+}\frac{\xi}{b}\\ &amp;\arcsin b-\arcsin0=\frac{1}{\sqrt{1-b^2}}\cdot b\implies \xi=\sqrt{1-(\frac{b}{\arcsin b})^2}\\ &amp;\lim_{b\to0^+}\frac{\xi}{b}=\lim_{b\to0^+}\frac{\sqrt{1-(\frac{b}{\arcsin b})^2}}{b}\\ &amp;令b=\sin t则I=\lim_{t\to0^+}\frac{\sqrt{1-(\frac{\sin t}{t})^2}}{\sin t}=\lim_{t\to0^+}\frac{\sqrt{t^2-(\sin t)^2}}{t\sin t}=\lim_{t\to0^+}\frac{\frac1{\sqrt3}t^2}{t^2}=\frac{\sqrt3}{3}\\ \end{aligned}  [1][Th][][2][3][4](1)(2)[5]limx0xf(x)=1,f(x)>0,f(x)xf(0)=x0limf(x)=x0limxf(x)=0,1=x0limx0f(x)f(0)=f(0)f(x)=f(x0)+f(x0)(xx0)+2f(ξ)(xx0)2f(x)=f(0)+f(0)(x0)+2f(ξ)(x0)2f(x)=x+xf(x)x=x0xx0limxx0f(x)=A,f(x0)=0,f(x0)=Af(x0)=xx0limf(x)=xx0limxx0f(x)(xx0)=0f(x0)=xx0limxx0f(x)f(x0)=Af(x)[a,b],(a.b)f(a)̸=f(b),ξ,η(a,b),使2ξf(ξ)=b+af(η).a>01.b2a2f(b)f(a)=2ξf(ξ)2.f(b)f(a)=f(η)(ba)f(b)f(a)=2ξf(ξ)(b2a2)=f(b)f(a)=f(η)(ba)2ξf(ξ)(b+a)(ba)=f(η)(ba)f(x)[0,4]f(x)41,f(2)0,[3,4]f(x)41f(b)f(a)=f(ξ)(ba)f(3)f(2)=f(3)(32)f(3)=f(2)+f(3)41x>0,(1)x+1 X =2x+θ(x) 1,0<θ(x)<1,(2)x+limθ(x)f(t)=t ,x+1 x =2x+θ(x) 10<θ(x)=ξx<12x+θ(x) =x+1 x 1=x+1 +x 4(x+θ(x))=x+1+2(x+1)x +xθ(x)=2x+41+21(x+1)x x=41+21(x+1)x 2xx+limθ(x)=41+21x+lim((x+1)x x)=41+21x+lim(x+1)x +x1x=21f(x)=arcsinx,ξf(x)[0,b]0<b<1,b0+limbξarcsinbarcsin0=1b2 1bξ=1(arcsinbb)2 b0+limbξ=b0+limb1(arcsinbb)2 b=sintI=t0+limsint1(tsint)2 =t0+limtsintt2(sint)2 =t0+limt23 1t2=33

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值