Here's a technical blueprint for an activity organization app combining Python and C++:
# Activity Organization App Architecture
## System Overview
```mermaid
graph TD
A[Python Layer] --> B{Core Engine}
C[C++ Layer] --> B
B --> D[User Interface]
B --> E[Data Storage]
B --> F[External Integrations]
```
## Python Components (High-Level Logic)
### 1. Task Management API
```python
from fastapi import FastAPI
from pydantic import BaseModel
from datetime import datetime
app = FastAPI()
class Task(BaseModel):
title: str
priority: int
deadline: datetime
dependencies: list[str] = []
@app.post("/tasks/")
async def create_task(task: Task):
# Schedule using C++ optimized algorithm
optimal_schedule = cpp_scheduler.arrange_task(
task.dict(),
existing_tasks
)
db.save_task(optimal_schedule)
return {"status": "scheduled"}
@app.get("/schedule/optimize")
async def optimize_schedule():
# Call C++ constraint solver
return cpp_scheduler.optimize_current_tasks()
```
### 2. AI-Powered Suggestions
```python
from sklearn.cluster import KMeans
import numpy as np
class ActivityOrganizer:
def __init__(self):
self.model = KMeans(n_clusters=3)
def group_activities(self, activities):
features = np.array([self._extract_features(a)
for a in activities])
self.model.fit(features)
return self.model.labels_
def _extract_features(self, activity):
# Feature engineering for clustering
return [
len(activity['title']),
activity['duration'],
len(activity.get('participants', []))
]
```
## C++ Components (Performance-Critical)
### 1. Scheduling Algorithm
```cpp
#include <vector>
#include <algorithm>
#include <chrono>
struct Task {
std::string id;
time_t deadline;
int priority;
std::vector<std::string> dependencies;
};
class TaskScheduler {
public:
std::vector<Task> arrange_tasks(const std::vector<Task>& tasks) {
auto sorted = tasks;
std::sort(sorted.begin(), sorted.end(),
[](const Task& a, const Task& b) {
return a.priority > b.priority &&
a.deadline < b.deadline;
});
return validate_dependencies(sorted);
}
private:
std::vector<Task> validate_dependencies(std::vector<Task> tasks) {
// DAG validation and topological sort
return tasks;
}
};
```
### 2. Real-Time Notification Engine
```cpp
#include <queue>
#include <mutex>
#include <condition_variable>
class NotificationSystem {
std::priority_queue<Notification> queue;
std::mutex mtx;
std::condition_variable cv;
public:
void add_notification(const Notification& n) {
std::lock_guard<std::mutex> lock(mtx);
queue.push(n);
cv.notify_one();
}
void process_notifications() {
while(true) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{ return !queue.empty(); });
auto next = queue.top();
queue.pop();
lock.unlock();
execute_notification(next);
}
}
};
```
## Key Integration Points
### 1. Pybind11 Interface
```cpp
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_MODULE(scheduler, m) {
py::class_<TaskScheduler>(m, "TaskScheduler")
.def(py::init<>())
.def("arrange_tasks", &TaskScheduler::arrange_tasks);
py::class_<NotificationSystem>(m, "Notifier")
.def(py::init<>())
.def("add_notification", &NotificationSystem::add_notification);
}
```
### 2. Data Flow Architecture
```
Mobile/Web UI → Python API →
→ Simple CRUD: Python SQLAlchemy
→ Complex Operations: C++ Engine →
→ Database (SQLite/PostgreSQL)
→ External Services (Calendar APIs)
```
## Feature Matrix
| Component | Python Responsibilities | C++ Responsibilities |
|-------------------------|-----------------------------------|---------------------------------|
| Task Management | REST API, Validation | Scheduling Algorithms |
| Calendar Integration | API Communication | Time Zone Calculations |
| Collaboration | User Management | Real-Time Sync Engine |
| Analytics | Report Generation | Data Compression/Encryption |
| Notifications | Content Formatting | Priority Queue Management |
## Performance Optimization
**C++ Layer:**
```cpp
// SIMD-accelerated time calculations
#include <chrono>
#include <x86intrin.h>
time_t calculate_optimal_reminder(const time_t deadline) {
__m128i time_vec = _mm_set1_epi64x(deadline);
// Vectorized time calculations
return _mm_extract_epi64(time_vec, 0) - 3600; // 1hr before
}
```
**Python Layer:**
```python
@numba.jit(nopython=True)
def quick_priority_calc(urgency, importance):
return 0.7*urgency + 0.3*importance
```
## Security Implementation
**Python (Web Layer):**
```python
from cryptography.fernet import Fernet
from passlib.context import CryptContext
class SecurityManager:
def __init__(self):
self.cipher = Fernet.generate_key()
self.pwd_context = CryptContext(schemes=["bcrypt"])
def encrypt_task(self, task_data):
return Fernet(self.cipher).encrypt(task_data.encode())
```
**C++ (Data Layer):**
```cpp
#include <openssl/evp.h>
class DataVault {
public:
std::string encrypt_activity(const std::string& data) {
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv);
// ... encryption implementation
}
};
```
## Development Workflow
1. **Prototype Development**
- Python for rapid UI/API development
- Jupyter notebooks for algorithm experimentation
2. **Performance Optimization**
- Profile Python code to identify bottlenecks
- Port critical sections to C++
3. **Integration Testing**
- Validate cross-language data exchange
- Stress test scheduling algorithms
4. **Deployment**
- Docker containers for backend services
- PyInstaller/Qt for desktop deployment
- AWS Lambda for serverless components
## Suggested Tech Stack
| Category | Technologies |
|-----------------------|---------------------------------------|
| Frontend | React.js/Flutter |
| Backend Framework | FastAPI (Python) |
| Core Engine | C++20 with Boost/STL |
| Database | PostgreSQL + Redis |
| Real-Time | WebSocket + ZeroMQ |
| Deployment | Docker + Kubernetes |
Would you like me to elaborate on specific components like the AI recommendation system integration or the real-time collaboration engine implementation?