目录
- 习题一
-
- 1.7计算 D n + 1 = ∣ a 1 n a 1 n − 1 b 1 a 1 n − 2 b 1 2 ⋯ a 1 b 1 n − 1 b 1 n a 2 n a 2 n − 1 b 2 a 2 n − 2 b 2 2 ⋯ a 2 b 2 n − 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n + 1 n a n + 1 n − 1 b n + 1 a n + 1 n − 2 b n + 1 2 ⋯ a n + 1 b n + 1 n − 1 b n + 1 n ∣ D_{n+1}=\begin{vmatrix}a_1^n&a_1^{n-1}b_1&a_1^{n-2}b_1^2&\cdots&a_1b_1^{n-1}&b_1^n\\a_2^n&a_2^{n-1}b_2&a_2^{n-2}b_2^2&\cdots&a_2b_2^{n-1}&b_2^n\\\vdots&\vdots&\vdots&&\vdots&\vdots\\a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&a_{n+1}^{n-2}b_{n+1}^2&\cdots&a_{n+1}b_{n+1}^{n-1}&b_{n+1}^n\end{vmatrix} Dn+1=∣∣∣∣∣∣∣∣∣a1na2n⋮an+1na1n−1b1a2n−1b2⋮an+1n−1bn+1a1n−2b12a2n−2b22⋮an+1n−2bn+12⋯⋯⋯a1b1n−1a2b2n−1⋮an+1bn+1n−1b1nb2n⋮bn+1n∣∣∣∣∣∣∣∣∣
- 1.9证明:若行列式的某行元素全为 k ( k ≠ 0 ) k(k\ne0) k(k=0),则这个行列式的全部代数余子式之和为该行列式值的 1 k \cfrac{1}{k} k1倍,即 ∑ i = 1 n ∑ j = 1 n A i j = 1 k ∣ A ∣ \sum\limits_{i=1}^n\sum\limits_{j=1}^nA_{ij}=\cfrac{1}{k}|\bm{A}| i=1∑nj=1∑nAij=k1∣A∣。
- 新版例题一
- 新版习题一
- 写在最后
习题一
1.7计算 D n + 1 = ∣ a 1 n a 1 n − 1 b 1 a 1 n − 2 b 1 2 ⋯ a 1 b 1 n − 1 b 1 n a 2 n a 2 n − 1 b 2 a 2 n − 2 b 2 2 ⋯ a 2 b 2 n − 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n + 1 n a n + 1 n − 1 b n + 1 a n + 1 n − 2 b n + 1 2 ⋯ a n + 1 b n + 1 n − 1 b n + 1 n ∣ D_{n+1}=\begin{vmatrix}a_1^n&a_1^{n-1}b_1&a_1^{n-2}b_1^2&\cdots&a_1b_1^{n-1}&b_1^n\\a_2^n&a_2^{n-1}b_2&a_2^{n-2}b_2^2&\cdots&a_2b_2^{n-1}&b_2^n\\\vdots&\vdots&\vdots&&\vdots&\vdots\\a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&a_{n+1}^{n-2}b_{n+1}^2&\cdots&a_{n+1}b_{n+1}^{n-1}&b_{n+1}^n\end{vmatrix} Dn+1=∣∣∣∣∣∣∣∣∣a1na2n⋮an+1na1n−1b1a2n−1b2⋮an+1n−1bn+1a1n−2b12a2n−2b22⋮an+1n−2bn+12⋯⋯⋯a1b1n−1a2b2n−1⋮an+1bn+1n−1b1nb2n⋮bn+1n∣∣∣∣∣∣∣∣∣
解
D n + 1 = ( a 1 a 2 ⋯ a n + 1 ) n ∣ 1 b 1 a 1 ( b 1 a 1 ) 2 ⋯ ( b 1 a 1 ) n 1 b 2 a 2 ( b 2 a 2 ) 2 ⋯ ( b 2 a 2 ) n ⋮ ⋮ ⋮ ⋮ 1 b n + 1 a n + 1 ( b n + 1 a