实数系的基本定理_点集拓扑整理(4): 实数下限拓扑

fc4270059dc56aecda3f25d40b58148b.png

前一节传送: 分离性(下)

本文旨在整理Sorgenfrey直线

的拓扑性质, 主要考虑可数性和分离性, 并附上简要的证明. 它的性质在
[1]上有一个不错的综述. 题图来源于 [2].

目录

  • (1). 简单性质
  • (2). 可数性
  • (3). 分离性
  • (4). Sorgenfrey平面的性质

简单性质

我们先回顾下Sorgenfrey直线的定义:

定义4.1.1:

构成
上的一组基, 这组基生成的拓扑称为
上的
下限拓扑, 记作
, 也称为Sorgenfrey直线.
注记: 我们稍微说明一下
确实是一组拓扑基.

显然对任一实数
,
是一个包含
的基元素, 因而
覆盖
; 另一方面, 对任意两个基元素
,
, 它们的交集或为空集, 或为
, 其中

因而
是一组基.

由此确定
有一组子基

为作区分, 赋予通常拓扑的实数集记作

.

定理4.1.2:

的拓扑严格比
的细.
证明: 所有的开区间构成通常拓扑的基, 因此只需要证明每一开区间都是
中开集即可.

事实上
确实一个开集.

定理4.1.3:

中任一元素都是闭集.
证明: 任取
, 其补集为

由定理4.1.2,
是开集, 因而上述集合是开集. 从而
是闭集.

推论4.1.4:

是完全不连通的零维空间.
注记: 完全不连通的概念在之前整理康托集(它也是完全不连通的) [3]的时候涉及过, 即没有非平凡连通子集. 这是因为连通空间不可能有既开又闭的非空真子集. 零维空间是指存在一组既开又闭的基.
自然
也不是道路连通或局部道路连通的.

由于前面没有涉及到有关紧致性的讨论,

的紧致性我们一笔带过, 不做证明.

*定理4.1.5:

不是可数紧致空间.
注记: 所谓 可数紧致空间是指每一可数开覆盖都有有限子覆盖. 因此紧致空间一定是可数紧致的, 可数紧致的Lindelöf空间是紧致的. 尽管如此,
是一个强仿紧(strongly paracompact)空间(这是因为
是一个正则Lindelöf空间).

可数性

我们接下来说明

是第一可数的可分Lindelöf空间.

定理4.2.1:

是第一可数的.
证明: 任取实数
,

处的一个邻域基.

事实上任一包含
的开集都包含一个包含
的基元素, 这个基元素又必然包含一个形如
的子集, 取
即可.

而显然
与正整数集有一个一一对应, 因而自然可数.

定理4.2.2:

是可分的.
证明: 由定理4.1.2, 任意实数在
中的邻域也是
中的邻域, 因此
的稠密子集也是
的稠密子集(实际上某个子集在
中的导集必然包含在
中的导集中).

的可数稠密子集, 因此也是
的可数稠密子集.

定理4.2.3:

是强Lindelöf空间.

即它的每一子空间都是Lindelöf空间; 换句话说对

中任意一族开集
(
), 存在可数集
使得

证明:
中覆盖某一集合的一族开集.

不妨设被覆盖的集合为
.

我们先证明当
时有可数子覆盖.

为此设

考虑

我们证明
是可数集.

任取
, 显然存在一个
使得
.

这时取
中一个有理数(因有理数稠密必然是存在的)
就给出了一个
的映射

注意到

因此若
,
中的点, 设
, 假若
, 则

从而

矛盾! 故
, 从而
是单射.

因此
是可数集.

这样取

就是
的一个可数子族且是
的开覆盖.

注意到
作为
的子空间也是
空间从而也是Lindelöf空间,
也是
中开集, 因此存在可数集
使得

因而

就是
的一个可数子族且是
的开覆盖.

从而
就是
的一个可数子覆盖.

现在我们再来看一般情况(实际上和证明
空间是Lindelöf空间的手段是类似的).

任取
, 存在
使得

这样根据我们刚才证明的结果, 存在
的可数子族
使得

, 则存在
使得
, 不妨取定一个这样的
, 这时

就会是
的可数子覆盖.

定理4.2.4:

不是第二可数的.
证明: 任取
的一组基
. 对于任意一个实数
, 存在一个
中的元素
使得

这时
的一个单射(这是因为
).

因此
是不可数集.

分离性

定理4.3.1:

是完全正规豪斯道夫(
)空间, 即它的每一子空间都是正规豪斯道夫(
)空间.
证明: 由定理2.3.5(度量空间具有最好的分离性), 度量空间
空间.

由定理3.1.5(第四条)和定理4.1.2,
空间.

由定理4.2.1的证明,
中任一点
的任一开邻域
都必然包含一个形如
的元素. 考虑
, 定理4.1.3,
既开又闭, 因而
, 这时

由定理3.2.1(正则性的等价刻画),
是正则空间.

由定理3.2.5(正则性具有遗传性),
的每一子空间都是正则空间.

由定理4.2.3,
的每一子空间都是正则Lindelöf空间.

由定理4.3.5(正则Lindelöf空间是正规的)
的每一子空间都是正规空间.

在结合定理3.1.5(
具有遗传性)我们就证明了
是完全正规豪斯道夫空间.

注意, 上面的证明中应用了大量上一节提及的定理, 但是在上一节中并没有给出证明. 但实际上除了定理4.3.5其他定理的证明都不复杂(且在课本上都能找到). 有兴趣的读者也可以尝试通过证明一对隔离子集都是邻域隔离的来证明这一点.

尽管

具有相当好的分离性(事实上, 它还是单调正规空间
[4]), 但它仍然不是可度量化的(也因此结合Uryson度量化定理, 也能推出它不是第二可数的).

定理4.3.2:

不是可度量化的.
证明: 如若不然, 由定理1.4.2(可分度量空间第二可数)和定理4.2.2,
是第二可数的, 但这与定理4.2.4矛盾.

Sorgenfrey平面的性质

定义4.4.1: 积空间

称为Sorgenfrey平面, 简记为
.

定理4.4.2:

的一组基. 这些基元素依然是既开又闭的.
有限积空间的基本性质. 证明从略. 作为推论
也完全不连通.

定理4.4.3:

是第一可数的可分空间.
证明: 由定理4.2.1和4.2.2,
是第一可数的可分空间.

由定理1.2.5和1.2.9(
可数可积),
是第一可数的可分空间.

定理4.4.4:

不是第二可数的.
证明: 首先
作为
的子空间和
同胚(同胚映射的构造相当显然, 留给读者). 因此由于
是拓扑性质, 故由定理4.2.4,
不是
空间.

但定理1.2.5指出
具有遗传性, 因此
不可能是
空间, 否则
空间矛盾.

考虑

中的一个子集(所谓"反对角线")

引理4.4.5:

是闭集.
既可以用
是豪斯道夫空间来说明(步骤和证明豪斯道夫空间的对角线是闭集一样), 也能用
是开集(利用基元素来生成它)来说明. 结论不难留给读者.

引理4.4.6:

作为
的子空间具有离散拓扑(即任意子集都是开集).
这是因为单点集

是子空间
中的开集.

推论4.4.7:

中任一子集都是(
中)闭集.

定理4.4.6:

不是Lindelöf空间.
证明: 考虑

易见
的一个开覆盖.

由于
是不可数集,
中的元素要么与
不相交, 要么只有一个交点, 因此
不可能有一个可数子覆盖(盖住
). 这就说明了
不是Lindelöf空间.

定理4.4.7:

是完全正则豪斯道夫空间(
).
这是因为
具有可积性.

定理4.4.8:

不是正规空间.
证明: 假设
是正规空间.

考虑
的任一非空真子集
, 由推论4.4.7和正规性定义, 存在不相交的开集
满足
,

考虑
的可数稠密子集
, 定义映射


下面证明
是单射.

显然当
的非空真子集时
.

设有另一个非空真子集
, 因此存在

是一个
中的非空开集, 因此

因而存在一个元素在
中却不在
中, 即

是单射.

这意味着
的基数不小于
的基数, 但这是不可能的(前者可数, 后者不可数).

不是正规空间.

至此关于Sorgenfrey直线的可数性、分离性就整理完毕了, 读者可以自己对照前几节的内容.

可以看到如果要否定一个空间具有某种分离性或可数性不是那么简单的(4.2.3和4.4.8的证明可以看出这一点).

最后如果文章有什么错误的地方或者可以补充的地方请私聊或在评论中指出, 感谢!

参考

  1. ^https://topospaces.subwiki.org/wiki/Sorgenfrey_line
  2. ^https://encyclopedia.thefreedictionary.com/Sorgenfrey+plane
  3. ^https://zhuanlan.zhihu.com/p/129291583
  4. ^单调正规空间的性质要比完全正规要强, 定义见 https://encyclopedia.thefreedictionary.com/monotonically+normal+space
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值