泛函分析笔记(四) 拓扑空间的性质

拓扑空间的连续性

连续: X , Y X,Y X,Y 均为拓扑空间, f : X → Y f:X\to Y f:XY 是从 X 到 Y X到Y XY 的映射, x ∈ X x\in X xX 。若对 Y Y Y f ( x ) f(x) f(x) 的任何邻域 V,存在 X X X 中x的一个邻域 U U U 使得 U 在 f 下 的 像 f ( U ) ∈ V U在f下的像 f(U) \in V Uff(U)V ,则f在点x连续。

序列的连续和收敛: 如果X,Y是两个Hausdorff空间, 映射 f : X → Y f:X\to Y f:XY x ∈ X x\in X xX 处连续,则对于 X 中收敛于点 x x x 的任何序列 ( x n ) n = 0 ∞ (x_n)_{n=0}^\infty (xn)n=0 ,序列 ( f ( x n ) ) n = 0 ∞ (f(x_n))_{n=0}^\infty (f(xn))n=0 在Y中收敛于 f(x)

这块概念私以为可以参考一下函数的连续,毕竟函数就是映射的一种嘛。这要求其实就是对连续的x的变化有相应连续的y的变化嘛,至于后面的序列内容也就呼之欲出了。

如果两个映射连续,那么他们的复合映射还是连续的 (显而易见显而易见)
所有连续映射组成的集合记作 C ( X ; Y ) C(X;Y) C(X;Y)

同胚映射

如果X,Y是拓扑空间,称映射 f : X → Y f:X\to Y f:XY 是 X 到 Y 上的同胚,是指 f 为双射,且 f ∈ C ( X , Y ) , f − 1 ∈ C ( X , Y ) f\in C(X,Y),f^{-1}\in C(X,Y) fC(X,Y),f1C(X,Y)

  • 如果f是X到Y的双射,当且仅当X中任何开子集或闭子集在f下的直接像是Y中的开子集或相应的闭子集时,f是X到Y上的同胚映射。

如果存在拓扑空间X到Y上的同胚映射,则称X和Y是同胚的。

啊所以我对这个同胚的肤浅认识就是说这个映射既能X到Y又能Y到X,比如我们能求反函数的连续函数其实都是同胚映射。
根据搜到的一些内容吧,同胚映射保证了拓扑性质不改变

Tietze-Urysohn 扩张定理

其实我一眼看成了sohu
设X为正规的拓扑空间,F为X的闭子集, f : F → R f:F\to \mathbb R f:FR 为连续函数,则存在连续函数 f ~ : X → R \tilde{f} : X\to \mathbb{R} f~:XR ,使得对所有的 x ∈ F 有 f ~ ( x ) = f ( x ) x\in F 有 \tilde{f}(x) = f(x) xFf~(x)=f(x)

为啥叫扩张定理呢?我理解可能是从子集F延伸到X了吧。根据这个定理可以让一些局部的性质推广到全局。

拓扑空间的紧性

如果 ( X , O ) (X,\mathcal{O}) (X,O) 是拓扑空间,K是X的一个子集,如果对X中任何一族开集 ( O i ) i ∈ I (O_i)_{i\in I} (Oi)iI ,当 K ⊂ ∪ i ∈ I O i K\subset \cup_{i\in I}O_i KiIOi ,必存在 ( O i ) i ∈ I (O_i)_{i\in I} (Oi)iI 的有限子族 ( O i ) j ∈ J (O_i)_{j\in J} (Oi)jJ ,使得 K ⊂ ∪ j ∈ J O j K\subset \cup_{j\in J}O_j KjJOj ,则称K为紧集。

用人话讲,就是说任何的开覆盖都有有限的子覆盖。如果K不管在哪个开集里面都能找到有限的子族包括它,它就是个紧的。

紧集的性质

  • 拓扑空间X是紧的充要条件是对X中闭子集 F i F_i Fi 组成的任何闭集族 ( F i ) i ∈ I (F_i)_{i\in I} (Fi)iI ,如果对 ( F i ) i ∈ I (F_i)_{i\in I} (Fi)iI 的任何有限子族 ( F j ) j ∈ J (F_j)_{j\in J} (Fj)jJ 均有 ∩ j ∈ J F j ≠ ∅ \cap_{j\in J} F_j \not ={\emptyset} jJFj= 就是子族交集不为空
  • Hausdorff空间的任何紧子集都是闭集,紧拓扑空间的闭子集是紧集
  • 如果 f : X → Y f:X\to Y f:XY 是连续映射,则X中任何紧集K的像 f ( K ) f(K) f(K) 是Y中的紧集。
  • 紧拓扑空间X到拓扑空间Y上的连续双射是X到Y上的同胚
  • X j X_j Xj , 1 ≤ j ≤ n 1\le j\le n 1jn ,均为紧拓扑空间,则装备乘积拓扑的乘积空间 Π j = 1 n X j \mathop{\Pi}\limits_{j=1}^n X_j j=1ΠnXj 是紧空间

拓扑空间的连通性和单连通性

拓扑空间 ( X , O ) (X,\mathcal O) (X,O) 是连通的,指的是X中既是开集又是闭集的子集只有X和 ∅ \emptyset ,X的子集A称为连通的,是指A关于X在A上的诱导拓扑,是一个连通的拓扑空间。

我理解嘛,连通顾名思义就是连载一块,这个X中既是开集又是闭集的子集只有X和 ∅ \emptyset 指的应该就是没有什么子集能把它分开。
知乎一个回答里面我看到说先定义拓扑空间什么叫分离的,就是 X = A ∪ B , A ⊂ U , B ⊂ V X=A\cup B,A\subset U,B\subset V X=AB,AU,BV ,然后AB都不空,U和V又没有交集,就是分离的,那么反过来自然就是连通了,就是前面定义的描述。

定义大概意思就是说这个拓扑空间是一块大陆而没有孤岛吧,只有整块大陆和空集既是开集又是闭集。(整块大陆的补集是空集,空集的补集则是X这块大陆)

单连通

道路: 如果x和y是拓扑空间X中的两个点,连接x和y的道路是指连续映射 γ : [ 0 , 1 ] → X , γ ( 0 ) = x , γ ( 1 ) = y \gamma:[0,1]\to X, \gamma(0) = x,\gamma(1) = y γ:[0,1]X,γ(0)=x,γ(1)=y
我可以简单理解为固定起点和终点的一条线吧
弧连通: 如果对拓扑空间X中的任何不同的两个点,均存在连接的道路,那么X是弧连通的
那不就是任意两点都相连嘛?

单连通: 拓扑空间X是单连通的,是指它是弧连通的,因而是连通的,而且对任何两条道路 γ 0 : [ 0 , 1 ] → X \gamma_0:[0,1]\to X γ0:[0,1]X γ 1 : [ 0 , 1 ] → X \gamma_1:[0,1]\to X γ1:[0,1]X , 当 γ 0 ( 0 ) = γ 1 ( 0 ) , γ 0 ( 1 ) = γ 1 ( 1 ) \gamma_0(0) = \gamma_1(0), \gamma_0(1) = \gamma_1(1) γ0(0)=γ1(0),γ0(1)=γ1(1) 时,它们必然同胚

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值