4.5 道路连通空间

本文介绍了拓扑空间中的道路连通性概念,通过定义道路、曲线和道路连通空间,阐述了如何判断一个拓扑空间是否为道路连通。实数空间R和n维欧氏空间被证明是道路连通的,而道路连通性是连通性的推广,但并不蕴含局部连通性。此外,还讨论了道路连通分支和它们的性质,以及证明了在n维欧氏空间中连通开集的道路连通性。
摘要由CSDN通过智能技术生成

§4.5 道路连通空间

  较之于连通空间的概念,道路连通空间这个概念似觉更符合我们的直觉因而易于理解些.我们先定义“道路”.

  定义4.5.1 设X是一个拓扑空间.从单位闭区间[0,1]→X的每一个连续映射f:[0,1]→X叫做X中的一条道路,并且此时f(0)和f(1)分别称为道路f的起点和终点.当x=f(0)和y=f(1)时,称f是X中从x到y的一条道路.起点和终点相同的道路称为闭路,并且这时,它的起点(也是它的终点)称为闭路的基点.

  如果f是X中的一条道路,则道路f的象集f([0,l])称为X中的一条曲线或弧,并且这时道路f的起点和终点也分别称为曲线f([0,1])的起点和终点.

  或许应当提醒读者,“道路”这个词在这里所表达的意思已经与我们对它原有的理解颇有不同,希望读者不要因此而混淆了我们在这里严格定义的道路和曲线这两个不同的概念.

  定义4.5.2 设X是一个拓扑空间.如果对于任何x,y,存在着X中的一条从x到y的道路(或曲线),我们则称X是一个道路连通空间.X中的一个子集Y称为X中的一个道路连通子集,如果它作为X的子空间是一个道路连通空间.(Y是否道路连通与X是否道路连通没有关系)

  实数空间R是道路连通的.这是因为如果x,y∈R,则连续映射f:[0,1]→R定义为对于任何t∈[0,1]有f(t)=x+t(y-x),便是R中的一条以x为起点以y为终点的道路、也容易验证任何一个区间都是道路连通的.

  定理4.5.1 如果拓扑空间X是一个道路连通空间,则X必然是一个连通空间.

  证明 对于任何x,y∈X,由于X道路连通,故存在从x到y的一条道路f:[0,l]→X这时曲线f([0,1]),作为连通空间[0,l]在连续映射下的象,是X中的一个连通子集,并且我们有x,y∈f([0,1]).因此根据定理4.1.7可见X是一个连通空间.

  连通空间可以不是道路连通的.我们已经指出例4.4.l中的是一个连通空间.不难证明(留作习题,见习题第3题)它不是道路连通的.

  道路连通与局部连通之间更没有必然的蕴涵关系、例如离散空间都是局部连通的,然而包含着多于两个点的离散空间不是连通空间,当然也就不是道路连通空间了.

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值