机器学习与统计学

术语对比

Machine LearningStatistics
network, graphsmodel
weightsparameters
learningfitting
supervised learningregression/classification
unsupervised learningdensity estimation, clustering

统计学

主要内容包括:概率基础,参数模型和非参数模型,对于参数模型涉及到参数估计的方法(点估计、矩估计),而估计方法又分为频率论方法和贝叶斯估计方法。统计决策理论是通过引入风险或损失函数来估计参数的。将这些统计学的原理运用于回归和分类问题中得到相应的模型。还有,统计独立性推断、因果推断,这些运用于有向、无向图模型中。

参考

讨论帖子
1.http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
2.https://www.quora.com/How-do-I-learn-statistics-and-probability-for-machine-learning-2
统计学
1.L.沃塞曼著,张波等译《统计学完全教程》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值