术语对比
Machine Learning | Statistics |
---|---|
network, graphs | model |
weights | parameters |
learning | fitting |
supervised learning | regression/classification |
unsupervised learning | density estimation, clustering |
统计学
主要内容包括:概率基础,参数模型和非参数模型,对于参数模型涉及到参数估计的方法(点估计、矩估计),而估计方法又分为频率论方法和贝叶斯估计方法。统计决策理论是通过引入风险或损失函数来估计参数的。将这些统计学的原理运用于回归和分类问题中得到相应的模型。还有,统计独立性推断、因果推断,这些运用于有向、无向图模型中。
参考
讨论帖子
1.http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
2.https://www.quora.com/How-do-I-learn-statistics-and-probability-for-machine-learning-2
统计学
1.L.沃塞曼著,张波等译《统计学完全教程》