[电路基础第六章]电容与电感

博客介绍了电容与电感这两个重要的无源储能元件。阐述了电容原理,包括其结构、电容常数决定因素、电流电压关系等,还提及实际电容等效;电感方面介绍了原理、感应系数决定因素、电流电压关系等,以及实际电感等效。最后指出实际中多用电容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本章介绍两个重要的无源元件——电容与电感。它们能够存储能量,因此又被称为储能元件。

电容

电容的原理

一个电容包括两个导电板,中间是电介质(空气、陶瓷、纸等都可以是电介质)。
将一电压源 v v v接在电容两端,一个导电板会聚集正电荷 q q q,另一端是等量的负电荷。 q q q v v v有关系为:
q = C v (1) q=Cv \tag{1} q=Cv(1)其中 C C C为比例常数,称为电容常数,单位为法拉( F F F)。(实际中法拉是个很大的单位)

虽然电容常数为电荷/电压,但实际上决定电容常数的是电容本身的物理性质: C = ε A d (2) C=\frac{\varepsilon A}{d} \tag{2} C=dεA(2).

  • A A A为导电板面积
  • d d d为导电板的间距
  • ε \varepsilon ε为电介质的介电常数

笔者按:对 ( 2 ) (2) (2)感兴趣的同学可以去学习大学物理中关于电介质的内容。笔者也忘了。


( 1 ) (1) (1)式两边同时求导得到瞬时电流:
i = C d v d t (3) i=C\frac{dv}{dt}\tag{3} i=Cdtdv(3)
满足该关系式(即电流与电压对时间的导数成比例)的电容称为线性电容,否则为非线性电容。(大多数是线性)


( 3 ) (3) (3)式两端积分:
v ( t ) = 1 C ∫ − ∞ t i ( τ ) d τ v(t)=\frac{1}{C}\int_{-\infty}^{t}i(\tau)d\tau v(t)=C1ti(τ)dτ
或者写成:
v ( t ) = 1 C ∫ t 0 t i ( τ ) d τ + v ( t 0 ) v(t)=\frac{1}{C}\int_{t_0}^{t}i(\tau)d\tau+v(t_0) v(t)=C1t0ti(τ)dτ+v(t0)
这意味着电容“记住了” t 0 t_0 t0时刻的电压,并把它带到了 t t t


瞬时功率: p = v i = C v d v d t p=vi=Cv\frac{dv}{dt} p=vi=Cvdtdv
存储的能量: w = ∫ − ∞ t p ( τ ) d τ = C ∫ v ( − ∞ ) v ( t ) v d v = 1 2 C v 2 ∣ v ( − ∞ ) v ( t ) = 1 2 C v 2 ( t ) w=\int_{-\infty}^{t}p(\tau)d\tau=C\int_{v(-\infty)}^{v(t)}vdv=\frac12Cv^2|_{v(-\infty)}^{v(t)}=\frac12Cv^2(t) w=tp(τ)dτ=Cv()v(t)vdv=21Cv2v()v(t)=21Cv2(t)

PS:

  • ( 3 ) (3) (3)式看,电容电压不会突变,因为不可能有无穷大的电流。
  • ( 3 ) (3) (3)式看,电容对于直流电路来说是开路的,因为没有电压变化。

实际电容等效

理想电容可以一直存储能量而不流失,而实际电容可等效为下面一个理想电阻加一个漏电阻:
在这里插入图片描述
这个漏电阻很大(100MΩ),因此通常不考虑。

电容的串并联

电感

电感的原理

实用的电感由导线绕成的线圈组成

电感上的电压与电流有关系为:
v = L d i d t (4) v=L\frac{di}{dt}\tag{4} v=Ldtdi(4)

  • L为比例常数,称为电感的感应系数,单位为亨利(H)

实际上,L由电感的实际尺寸和导电性能决定:
L = N 2 μ A l L=\frac{N^2 \mu A}{l} L=lN2μA

  • N是线圈匝数
  • l是长度
  • A是横截面积
  • μ \mu μ是磁导率

满足 ( 4 ) (4) (4)式的电感叫做线性电感,否则为非线性电感。

( 4 ) (4) (4)式积分:
i = 1 L ∫ − ∞ t v ( τ ) d τ = 1 L ∫ t 0 t v ( τ ) d τ + i ( t 0 ) i=\frac1L\int_{-\infty}^{t}v(\tau)d\tau=\frac1L\int_{t_0}^{t}v(\tau)d\tau+i(t_0) i=L1tv(τ)dτ=L1t0tv(τ)dτ+i(t0)
同样地,电感也具有记忆特性。


瞬时功率为: p = v i = ( L d i d t ) i p=vi=(L\frac{di}{dt})i p=vi=(Ldtdi)i
存储的能量: w = L ∫ − ∞ t p ( τ ) d τ = L ∫ − ∞ t i d i = 1 2 L i 2 ( t ) w=L\int_{-\infty}^{t}p(\tau)d\tau=L\int_{-\infty}^{t}idi=\frac12Li^2(t) w=Ltp(τ)dτ=Ltidi=21Li2(t)


PS:

  • ( 4 ) (4) (4)式,电感两端电流不可能突变,因为不存在无穷大的电压;
  • ( 4 ) (4) (4)式,电感对直流电路相当于短路。

实际电感的等效

在这里插入图片描述
R w 、 C w R_w、C_w RwCw都比较小,其中损耗电阻会使得电感会慢慢泄露能量,电容一般只有在高频电路中才需要考虑。

电感的串并联


实际中,由于电感大且较贵,因此一般多用电容。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值