Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks 阅读总结

该研究通过引入可学习的膜时间常数到脉冲神经网络中,优化了学习过程,经过50轮训练,在MNIST数据集上达到了99.22%的准确率,显示了这种方法对提高网络性能的有效性。

Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks

运行结果演示

我将该论文发布于此处的代码进行了阅读与运行,得到结果如下:
输入如下命令进行测试:

./codes/train_val.py -init_tau 2.0 -use_max_pool -use_plif -device cuda:0 -dataset_name MNIST -log_dir_prefix ./ -T 8 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

for-nothing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值