Contrastive Loss 对比损失函数及梯度的计算

Contrastive loss 最初源于 Yann LeCunDimensionality Reduction by Learning an Invariant Mapping” CVPR 2006。
该损失函数主要是用于降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。同样,该损失函数也可以很好的表达成对样本的匹配程度

Contrastive Loss 定义

在caffe的孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。contrastive loss的表达式如下:
L ( W , ( Y , X 1 , X 2 ) ) = 1 2 N ∑ n = 1 N Y D W 2 + ( 1 − Y ) m a x ( m − D W , 0 ) 2 L(W, (Y, X_1, X_2))=\frac{1}{2N}\sum_{n=1}^NYD_W ^2+(1-Y)max(m-D_W,0)^2 L(W,(Y,X1,X2))=2N1n=1NYDW2+(1Y)max(mDW,0)2
其中 D W ( X 1 , X 2 ) = ∣ ∣ X 1 − X 2 ∣ ∣ 2 = ( ∑ i = 1 P ( X 1 i − X 2 i ) 2 ) 1 2 D_W(X_1, X_2)=||X_1 - X_2||_2 = (\sum^P_{i=1}{(X^i_1 - X^i_2)^2})^\frac{1}{2} DW(X1,X2)=X1X22=(i=1P(X1iX2i)2)21,代表两个样本特征 X 1 X_1 X1 X 2 X_2 X2 的欧氏距离(二范数) P P P 表示样本的特征维数, Y Y Y 为两个样本是否匹配的标签, Y = 1 Y=1 Y=1 代表两个样本相似或者匹配, Y = 0 Y=0 Y=0 则代表不匹配, m m m 为设定的阈值, N N N 为样本个数。

观察上述的contrastive loss的表达式可以发现,这种损失函数可以很好的表达成对样本的匹配程度,也能够很好用于训练提取特征的模型。

  • Y = 1 Y = 1 Y=1(即样本相似时),损失函数只剩下 L S = 1 2 N ∑ n = 1 N Y D W 2 L_S = \frac{1}{2N}\sum_{n=1}^NYD_W ^2 LS=2N1n=1NYDW2 ,即原本相似的样本,如果在特征空间的欧式距离较大,则说明当前的模型不好,因此加大损失。

  • Y = 0 Y = 0 Y=0(即样本不相似时),损失函数为 L D = 1 2 N ∑ n = 1 N ( 1 − Y ) m a x ( m − D W , 0 ) 2 L_D = \frac{1}{2N}\sum_{n=1}^N (1-Y)max(m-D_W,0)^2 LD=2N1n=1N(1Y)max(mDW,0)2 ,即当样本不相似时,其特征空间的欧式距离反而小的话,损失值会变大,这也正好符号我们的要求。

    [注意这里设置了一个阈值margin,表示我们只考虑不相似特征欧式距离在0~margin之间的,当距离超过margin的,则把其loss看做为0(即不相似的特征离的很远,其loss应该是很低的;而对于相似的特征反而离的很远,我们就需要增加其loss,从而不断更新成对样本的匹配程度)]
    这里写图片描述

这张图表示的就是损失函数值与样本特征的欧式距离之间的关系,其中红色虚线表示的是相似样本的损失值,蓝色实线表示的不相似样本的损失值。

梯度计算

论文中使用stochastic gradient descent 来不断更新 D W D_W DW,不断减小loss,更好表达成对样本的匹配程度。
(这里我们先忽略累和操作,后面自己加上即可)

  • Y = 1(即样本相似时),损失函数为 L S = 1 2 N ∑ n = 1 N D W 2 L_S = \frac{1}{2N}\sum_{n=1}^ND_W ^2 LS=2N1n=1NDW2 ,此时计算梯度为:
    ∂ L S ∂ W = D W ∂ D W ∂ W \frac{\partial L_S}{\partial W} = D_W\frac{\partial D_W}{\partial W} \\ WLS=DWWDW

即分别对 X 1 X_1 X1 X 2 X_2 X2求偏导,更新梯度 :
在这里插入图片描述

  • Y = 0 (即样本不相似时),损失函数为 L D = 1 2 N ∑ ( 1 − Y ) m a x ( m − D W , 0 ) 2 L_D = \frac{1}{2N}\sum (1-Y)max(m-D_W,0)^2 LD=2N1(1Y)max(mDW,0)2,此时计算梯度为 :

    ∂ L D ∂ W = { 0 , D W &gt; m − ( m − D W ) ∂ D W ∂ W , D W &lt; m \frac{\partial L_D}{\partial W} = \left\{ \begin{matrix} &amp;0 &amp;, D_W &gt; m \\ &amp;-(m - D_W)\frac{\partial D_W}{\partial W} &amp;, D_W &lt; m \end{matrix}\right. WLD={0(mDW)WDW,DW>m,DW<m

同理,当 D W &lt; m D_W &lt; m DW<m时,分别对 X 1 X_1 X1 X 2 X_2 X2求偏导:
在这里插入图片描述

Spring Model Analogy 弹簧模型类比

弹簧模型公式:
F = − K X F = -KX F=KX
(F表示两点间弹簧的作用力,K是弹簧的劲度系数,X为弹簧拉伸或收缩的长度,弹簧静止状态时X=0)

论文中将该contrastive loss损失函数类比于弹簧模型:将成对的样本特征,使用该损失函数来表达成对样本特征的匹配程度。成对的样本特征之间(类比于图中的一个个点),我们假设这些点之间都有一个弹簧,弹簧静止时长度为0,点对之间无作用力。①对于样本相似的特征,相当于其间的弹簧产生了正位移X(X < m),即弹簧被拉伸了X的长度,此时两个相似特征(点)之间存在吸引力。②对于样本不相似的特征,相当于其间的弹簧产生的了负位移,即弹簧被压缩了,此时两个不相似特征之间存在排斥力。注意弹簧的特性:当两点之间弹簧位移超X>m时,此时,弹簧发生形变,此时两点之间视为没有吸引力了。具体如下图所示:

结合上面求梯度的公式也可以很好的理解该损失函数的思想,上面的 ∂ L S ∂ W \frac{\partial L_S}{\partial W} WLS ∂ L D ∂ W \frac{\partial L_D}{\partial W} WLD 代表两点间弹簧的作用力F, ∂ D W ∂ W \frac{\partial D_W}{\partial W} WDW 对应弹簧的劲度系数, D W D_W DW − ( m − D W ) -(m - D_W) (mDW)代表弹簧的缩放位移。
这里写图片描述
上图显示了类比的弹簧系统。实心圆表示与中心点相似的点。空心圆圈代表不同的点。弹簧显示为红色曲折线。作用在点上的力以蓝色箭头显示。箭头的长度近似给出了力的强度。在右侧的两个图中,x轴是距离 D W D_W DW,y轴是损失函数的值。(a)中显示使用仅吸引attractonly弹簧连接到相似点的点。(b)表示相似点对的损失函数及其梯度。(c)表示该点仅与半径为m的圆内的不同点连接,仅具有m-repulse-only排斥弹簧连接到不相似的点。(d)显示不相似点对相关的损失函数及其梯度。(e)显示一个点被不同方向的其他点拉动,形成平衡的情况。

Reference:

虹膜识别孪生网络对比损失函数是一种用于训练孪生网络的损失函数,用于学习将同一主体的不同图像映射到相似的特征空间中,而将不同主体的图像映射到不同的特征空间中。该损失函数的目标是最小化同一主体图像对之间的距离,并最大化不同主体图像对之间的距离。 引用中提到了配对的对比损失作为唯一的监督信号,这是一种常见的用于训练孪生网络的对比损失函数。该损失函数通过比较同一主体的图像对和不同主体的图像对之间的距离来进行训练。具体而言,对于每个图像对,损失函数计算它们在特征空间中的欧氏距离,并根据它们的标签(同一主体或不同主体)来调整损失。通过最小化同一主体图像对之间的距离和最大化不同主体图像对之间的距离,孪生网络可以学习到更具判别性的特征表示。 以下是一个示例代码,演示了如何使用虹膜识别孪生网络对比损失函数进行训练: ```python import tensorflow as tf # 定义孪生网络结构 def siamese_network(input_shape): input = tf.keras.Input(shape=input_shape) # 网络结构定义... return model # 定义对比损失函数 def contrastive_loss(y_true, y_pred): margin = 1.0 loss = tf.reduce_mean(y_true * tf.square(y_pred) + (1 - y_true) * tf.square(tf.maximum(margin - y_pred, 0))) return loss # 加载数据集 train_data = ... train_labels = ... # 创建孪生网络模型 input_shape = (64, 64, 3) model = siamese_network(input_shape) # 编译模型 model.compile(optimizer='adam', loss=contrastive_loss) # 训练模型 model.fit(train_data, train_labels, epochs=10, batch_size=32) # 使用训练好的模型进行预测 test_data = ... predictions = model.predict(test_data) # 相关问题:
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值