1.均方误差(Mean Squared Error, MSE)
原理: 均方误差是最常见的回归问题中的损失函数。它是预测值与真实值之差的平方的平均值。计算公式如下:
其中,yi是真实标签,y^i是预测值,N是样本数。
作用:
- MSE对大误差的惩罚较重,适用于需要优化图像像素级准确性的任务。
- 然而,它对噪声较为敏感,可能导致过拟合,且对图像的结构和纹理信息的考虑较少。
2. 交叉熵损失(Cross-Entropy Loss)
原理: 交叉熵损失常用于分类问题,尤其是图像分类、目标检测等任务中。它衡量的是预测的类别分布与真实标签分布之间的差异。对于二分类问题,交叉熵损失函数的形式为:
作用:
- 交叉熵损失通过对预测结果的概率进行优化,使得网络能输出更符合真实标签分布的概率。
- 适用于需要判定输入图像属于某一类别的任务,能够有效提升分类精度。
梯度相关的损失函数
在深度学习中常用于优化图像生成、图像恢复、图像分割等任务,尤其在提升图像的局部细节、结构或纹理方面有显著的效果。这类损失函数通常依赖于图像的梯度信息,以便模型能够捕捉到图像的边缘、纹理和细节部分。以下是几种与梯度相关的常见损失函数:
1. 梯度惩罚损失(Gradient Penalty Loss)
原理: 梯度惩罚损失通常用于生成对抗网络(GAN)中,尤其是在Wasserstein GAN(WGAN)中。其目的是约束判别器的梯度,使得判别器对输入图像的梯度更加平滑,从而改善训练的稳定性和生成图像的质量。梯度惩罚通常用于对判别器的输出进行正则化。
作用:
- 梯度惩罚损失通过限制判别器的梯度,有助于提高训练过程的稳定性,并且在生成对抗网络中改善生成图像的质量。
- 可以防止判别器过于“强大”并保持生成器的有效学习,避免过拟合。
2. 边缘保持损失(Edge Preservation Loss)
原理: 边缘保持损失通过对图像的梯度进行约束,确保图像的边缘和纹理细节得到保留。这种损失函数通常通过对图像的梯度进行计算,以便在重建图像时不损失重要的边缘信息。梯度计算可以通过Sobel算子、Prewitt